切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2025, Vol. 18 ›› Issue (02) : 146 -150. doi: 10.3877/cma.j.issn.1674-6880.2025.02.011

综述

自噬在高甘油三酯性急性胰腺炎中的研究进展
刘贻晶1, 李虹瑶1, 曹成龙1, 刘世显1, 李培武1,()   
  1. 1. 730030 兰州,兰州大学第二医院急救中心
  • 收稿日期:2024-03-20 出版日期:2025-04-30
  • 通信作者: 李培武
  • 基金资助:
    国家自然科学基金项目(82260135)

Yijing Liu, Hongyao Li, Chenglong Cao, Shixian Liu, Peiwu Li()   

  • Received:2024-03-20 Published:2025-04-30
  • Corresponding author: Peiwu Li
引用本文:

刘贻晶, 李虹瑶, 曹成龙, 刘世显, 李培武. 自噬在高甘油三酯性急性胰腺炎中的研究进展[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 146-150.

Yijing Liu, Hongyao Li, Chenglong Cao, Shixian Liu, Peiwu Li. [J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2025, 18(02): 146-150.

1
Petrov MS, Yadav D.Global epidemiology and holistic prevention of pancreatitis [J].Nat Rev Gastroenterol Hepatol, 2019, 16 (3): 175-184.
2
黄平,傅小云,付豹. 重症急性胰腺炎患者125 例临床特征和预后分析[J/OL]. 中华危重症医学杂志(电子版),2023,16(5):403-406.
3
孙备,白睿,隋宇航. 重症急性胰腺炎外科救援的实施与策略[J]. 中华消化外科杂志,2024,23(5):653-657.
4
Maatman TK, Westfall-Snyder JA, Ceppa EP, et al.Necrotizing pancreatitis from hypertriglyceridemia: more severe disease?[J]. Dig Dis Sci, 2021, 66 (12): 4485-4491.
5
Jin M, Bai X, Chen X, et al. A 16-year trend of etiology in acute pancreatitis: the increasing proportion of hypertriglyceridemia-associated acute pancreatitis and its adverse effect on prognosis [J]. J Clin Lipidol,2019, 13 (6): 947-953.e1.
6
Wang XD, Yu WL, Sun Y. Activation of AMPK restored impaired autophagy and inhibited inflammation reaction by up-regulating SIRT1 in acute pancreatitis[J]. Life Sci, 2021, 277: 119435.
7
Zhang T, Gan Y, Zhu S.Association between autophagy and acute pancreatitis [J]. Front Genet,2023, 14: 998035.
8
Takabatake Y, Yamamoto T, Isaka Y. Stagnation of autophagy: a novel mechanism of renal lipotoxicity[J].Autophagy, 2017, 13 (4): 775-776.
9
Xiao Y, Liu H, Yu J, et al. MAPK1 / 3 regulate hepaticlipidmetabolismviaATG7-dependent autophagy[J]. Autophagy, 2016, 12 (3): 592-593.
10
Grootaert MOJ, Roth L, Schrijvers DM, et al.Defective autophagy in atherosclerosis: to die or to senesce? [J]. Oxid Med Cell Longev, 2018, 2018:7687083.
11
Mizushima N, Levine B.Autophagy in human diseases[J]. N Engl J Med, 2020, 383 (16): 1564-1576.
12
Stavoe AKH, Holzbaur ELF.Neuronal autophagy declines substantially with age and is rescued by overexpression of WIPI2 [J]. Autophagy, 2020, 16 (2):371-372.
13
Ghosh AK, Mau T, O'Brien M, et al. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue[J]. Aging (Albany NY), 2016, 8 (10): 2525-2537.
14
Oshima M, Seki T, Kurauchi Y, et al. Reciprocal regulationofchaperone-mediatedautophagy /microautophagy and exosome release [J]. Biol Pharm Bull, 2019, 42 (8): 1394-1401.
15
Cao W, Li J, Yang K, et al. An overview of autophagy: mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108 (3): 304-322.
16
Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk[J]. Nat Cell Biol, 2011, 13 (2): 132-141.
17
Casas K, Bykhovskaya Y, Mengesha E, et al. Gene responsibleformitochondrialmyopathyand sideroblastic anemia(MSA) maps to chromosome 12q24.3[J]. Am J Med Genet A, 2004, 127A (1): 44-49.
18
Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation,self-association and function through AMBRA1 and TRAF6[J]. Nat Cell Biol, 2013, 15 (4): 406-416.
19
Raimondi M, Cesselli D, Di Loreto C, et al. USP1(ubiquitin specific peptidase 1) targets ULK1 and regulatesitscellularcompartmentalizationand autophagy[J]. Autophagy, 2019, 15 (4): 613-630.
20
Al-Bari MAA, Xu P.Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways [J]. Ann N Y Acad Sci, 2020,1467 (1): 3-20.
21
Zhu Z, Yang C, Iyaswamy A, et al. Balancing mTOR signaling and autophagy in the treatment of Parkinson's disease[J]. Int J Mol Sci, 2019, 20 (3): 728.
22
Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation [J]. J Clin Invest, 2015, 125 (1):25-32.
23
Chiarini F, Evangelisti C, McCubrey JA, et al.Current treatment strategies for inhibiting mTOR in cancer[J]. Trends Pharmacol Sci, 2015, 36 (2): 124-135.
24
Caron A, Richard D, Laplante M. The roles of mTOR complexes in lipid metabolism [J]. Annu Rev Nutr,2015, 35: 321-348.
25
Saxton RA, Sabatini DM. mTOR signaling in growth,metabolism, and disease[J]. Cell, 2017, 169 (2): 361-371.
26
Fliniaux I, Germain E, Farfariello V, et al. TRPs and Ca2+ in cell death and survival[J]. Cell Calcium, 2018(69): 4-18.
27
East DA, Campanella M. Ca2+ in quality control: an unresolved riddle critical to autophagy and mitophagy[J]. Autophagy, 2013, 9 (11): 1710-1719.
28
Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance[J].Mol Cell, 2017, 66 (6): 789-800.
29
Ross FA, Jensen TE, Hardie DG.Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms [J]. Biochem J,2016, 473 (2): 189-199.
30
Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism [J]. Nature, 2009, 458(7242): 1131-1135.
31
Cui W, Sathyanarayan A, Lopresti M, et al.Lipophagy-derived fatty acids undergo extracellular efflux via lysosomal exocytosis [J]. Autophagy, 2021,17 (3): 690-705.
32
Zhang S, Peng X, Yang S, et al. The regulation,function, and role of lipophagy, a form of selective autophagy, in metabolic disorders [J]. Cell Death Dis,2022, 13 (2): 132.
33
Shin DW. Lipophagy: molecular mechanisms and implications in metabolic disorders [J]. Mol Cells,2020, 43 (8): 686-693.
34
dePretisN,AmodioA,FrulloniL.Hypertriglyceridemicpancreatitis:epidemiology,pathophysiology and clinical management [J]. United European Gastroenterol J, 2018, 6 (5): 649-655.
35
Yamamoto T, Takabatake Y, Takahashi A, et al.High-fat diet-induced lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in the kidney[J]. J Am Soc Nephrol, 2017, 28 (5): 1534-1551.
36
Gregor MF, Hotamisligil GS. Thematic review series:adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease [J]. J Lipid Res,2007, 48 (9): 1905-1914.
37
Valdivielso P, Ramírez-Bueno A, Ewald N. Current knowledge of hypertriglyceridemic pancreatitis [J]. Eur J Intern Med, 2014, 25 (8): 689-694.
38
Komiya K, Uchida T, Ueno T, et al. Free fatty acids stimulate autophagy in pancreatic β-cells via JNK pathway[J]. Biochem Biophys Res Commun, 2010, 401(4): 561-567.
39
Wu J, Hu G, Lu Y, et al. Palmitic acid aggravates inflammation of pancreatic acinar cells by enhancing unfolded protein response induced CCAAT-enhancerbinding protein β-CCAAT-enhancer-binding protein α activation[J]. Int J Biochem Cell Biol, 2016, 79: 181-193.
40
Abdullah A, Ravanan P. The unknown face of IRE1α — beyond ER stress [J]. Eur J Cell Biol,2018, 97 (5): 359-368.
41
Mei Q, Zeng Y, Huang C, et al.Rapamycin alleviates hypertriglyceridemia-related acute pancreatitis via restoring autophagy flux and inhibiting endoplasmic reticulum stress[J]. Inflammation, 2020, 43 (4): 1510-1523.
42
Feng S, Wei Q, Hu Q, et al. Research progress on the relationship between acute pancreatitis and calcium overload in acinar cells[J]. Dig Dis Sci, 2019, 64 (1):25-38.
43
Glaser T, Arnaud Sampaio VF, Lameu C, et al.Calcium signalling: a common target in neurological disorders and neurogenesis [J]. Semin Cell Dev Biol,2019, 95: 25-33.
44
Lur G, Sherwood MW, Ebisui E, et al. InsP3receptors and Orai channels in pancreatic acinar cells: colocalization and its consequences[J]. Biochem J, 2011,436 (2): 231-239.
45
Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models [J].Gastroenterology, 2018, 154 (3): 689-703.
46
Mukherjee R, Mareninova OA, Odinokova IV, et al.Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP[J]. Gut, 2016, 65 (8): 1333-1346.
47
Li Z, Xu C, Tao Y, et al. Anisodamine alleviates lipopolysaccharide-induced pancreatic acinar cell injury through NLRP3 inflammasome and NF-κB signaling pathway [J]. J Recept Signal Transduct Res, 2020, 40(1): 58-66.
48
Pu WL, Bai RY, Zhou K, et al. Baicalein attenuates pancreatic inflammatory injury through regulating MAPK, STAT 3 and NF-κB activation [J].Int Immunopharmacol, 2019, 72: 204-210.
49
Wei JW, Huang K, Yang C, et al. Non-coding RNAs as regulators in epigenetics (Review)[J]. Oncol Rep,2017, 37 (1): 3-9.
50
Yuan X, Wu J, Guo X, et al. Autophagy in acute pancreatitis: organelle interaction and microRNA regulation [J]. Oxid Med Cell Longev, 2021, 2021:8811935.
51
Rupaimoole R, Slack FJ. MicroRNA therapeutics:towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16 (3):203-222.
52
Miao B, Qi WJ, Zhang SW, et al.miR-148a suppresses autophagy by down-regulation of IL-6 /STAT3 signaling in cerulein-induced acute pancreatitis[J]. Pancreatology, 2019, 19 (4): 557-565.
53
Wei H, Zhao H, Cheng D, et al. miR-148a and miR-551b-5p regulate inflammatory responses via regulating autophagyinacutepancreatitis[J].Int Immunopharmacol, 2024, 127: 111438.
54
Liu MW, Wei R, Su MX, et al. Effects of Panax notoginseng saponins on severe acute pancreatitis through the regulation of mTOR / Akt and caspase-3 signaling pathway by upregulating miR-181b expression in rats [J]. BMC Complement Altern Med, 2018, 18(1): 51.
55
Dai J, Jiang M, Hu Y, et al. Dysregulated SREBP1c/miR-153 signaling induced by hypertriglyceridemia worsens acute pancreatitis and delays tissue repair[J].JCI insight, 2021, 6 (2): e138584.
56
Sun H, Tian J, Li J.MiR-92b-3p ameliorates inflammation and autophagy by targeting TRAF3 and suppressing MKK3-p38 pathway in caerulein-induced AR42J cells[J]. Int Immunopharmacol, 2020, 88: 106691.
57
Li W, Zhang L. Regulation of ATG and autophagy initiation[J]. Adv Exp Med Biol, 2019 (1206): 41-65.
58
Suzuki K, Akioka M, Kondo-Kakuta C, et al. Fine mappingofautophagy-relatedproteinsduring autophagosome formation in Saccharomyces cerevisiae[J]. J Cell Sci, 2013, 126 (Pt 11): 2534-2544.
59
Yamaguti M, Suzuki NN, Fujioka Y, et al.Crystallization and preliminary X-ray analysis of Atg10[J].Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007, 63 (Pt 5): 443-445.
60
杨晶,高青. 重症急性胰腺炎继发脓毒症的危险因素分析[J/OL]. 中华危重症医学杂志(电子版),2023,16(2):105-110.
No related articles found!
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?