切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2024, Vol. 17 ›› Issue (04) : 326 -330. doi: 10.3877/cma.j.issn.1674-6880.2024.04.010

综述

脓毒症相关性急性肺损伤信号通路的研究进展
沈沛1, 何国丽1, 徐娜娜1, 黄家明1, 丁莉1, 罗遵伟1, 薛娇2, 周满红3,()   
  1. 1. 563000 贵州遵义,遵义医科大学附属医院急诊科
    2. 564500 贵州仁怀,贵州茅台医院急诊科
    3. 563000 贵州遵义,遵义医科大学附属医院急诊科;564500 贵州仁怀,贵州茅台医院急诊科
  • 收稿日期:2024-05-06 出版日期:2024-08-31
  • 通信作者: 周满红
  • 基金资助:
    国家自然科学基金项目(82060346); 遵义市科技计划项目(遵市科合HZ字(2022)287、221号); 急诊医学专业学位研究生课程案例库(黔教合YJSCXJH(2018)092)
  • Received:2024-05-06 Published:2024-08-31
引用本文:

沈沛, 何国丽, 徐娜娜, 黄家明, 丁莉, 罗遵伟, 薛娇, 周满红. 脓毒症相关性急性肺损伤信号通路的研究进展[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 326-330.

脓毒症是一种因宿主对病原菌感染严重反应失调所致的以持续过度炎症和免疫抑制为特征的异质性较强的病理综合征[1]。宿主对脓毒症的反应涉及免疫细胞、细胞因子、补体系统、凝血级联系统、内皮反应及神经内分泌系统等多因素之间复杂的相互作用[2],这些因素综合作用可导致脓毒症的不同表现、进展及预后,继而给脓毒症的治疗和处理造成困难。在脓毒症引发的器官功能障碍中,肺部是最早且最易受累的器官[3],常表现为脓毒症相关性急性肺损伤(sepsis-induced acute lung injury,S-ALI)。据报道,超过半数的脓毒症患者合并S-ALI,且病死率超过30%[4,5]。尽管对S-ALI的研究日益深入,但对其机制仍有待进一步了解。S-ALI疾病进程中的潜在机制涉及复杂的信号通路,本研究拟就此综述如下。

1
Wang W, Liu CF. Sepsis heterogeneity[J]. World J Pediatr, 2023, 19 (10): 919-927.
2
Schuurman AR, Sloot PMA, Wiersinga WJ, et al. Embracing complexity in sepsis[J]. Crit Care, 2023, 27 (1): 102.
3
Park I, Kim M, Choe K, et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury[J]. Eur Respir J, 2019, 53 (3): 1800786.
4
Xie J, Wang H, Kang Y, et al. The epidemiology of sepsis in Chinese ICUs: a national cross-sectional survey[J]. Crit Care Med, 2020, 48 (3): e209-e218.
5
Yoo JW, Ju S, Lee SJ, et al. Red cell distribution width/albumin ratio is associated with 60-day mortality in patients with acute respiratory distress syndrome[J]. Infect Dis (Lond), 2020, 52 (4): 266-270.
6
Wang Z, Wang Z. The role of macrophages polarization in sepsis-induced acute lung injury[J]. Front Immunol, 2023 (14): 1209438.
7
Zou S, Jie H, Han X, et al. The role of neutrophil extracellular traps in sepsis and sepsis-related acute lung injury[J]. Int Immunopharmacol, 2023, 124 (Pt A): 110436.
8
Gong H, Chen Y, Chen M, et al. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome[J]. Front Med (Lausanne), 2022 (9): 1043859.
9
Zhou X, Liao Y. Gut-lung crosstalk in sepsis-induced acute lung injury[J]. Front Microbiol, 2021 (12): 779620.
10
Sun B, Lei M, Zhang J, et al. Acute lung injury caused by sepsis: how does it happen?[J]. Front Med (Lausanne), 2023 (10): 1289194.
11
Guo J, Chen X, Wang C, et al. Liraglutide alleviates acute lung injury and mortality in pneumonia-induced sepsis through regulating surfactant protein expression and secretion[J]. Shock, 2024, 61 (4): 601-610.
12
Jiao Y, Zhang T, Zhang C, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J]. Crit Care, 2021, 25 (1): 356.
13
Xie H, Chai H, Du X, et al. Overexpressing long non-coding RNA OIP5-AS1 ameliorates sepsis-induced lung injury in a rat model via regulating the miR-128-3p/Sirtuin-1 pathway[J]. Bioengineered, 2021, 12 (2): 9723-9738.
14
Yang J, Nie J, Ma X, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials[J]. Mol Cancer, 2019, 18 (1): 26.
15
Tian J, Li Y, Mao X, et al. Effects of the PI3K/Akt/HO-1 pathway on autophagy in a sepsis-induced acute lung injury mouse model[J]. Int Immunopharmacol, 2023, 124 (Pt B): 111063.
16
Guo W, Hu Z. SRPK1 promotes sepsis-induced acute lung injury via regulating PI3K/AKT/FOXO3 signaling[J]. Immunopharmacol Immunotoxicol, 2023, 45 (2): 203-212.
17
Li T, Geng Z, Zhang J, et al. BP5 alleviates endotoxemia-induced acute lung injury by activating Nrf2 via dual regulation of the Keap1-Nrf2 interaction and the Akt (Ser473)/GSK3β (Ser9)/Fyn pathway[J]. Free Radic Biol Med, 2022, 193 (Pt 1): 304-318.
18
Kim GO, Park DH, Bae JS. Procyanidin B2 attenuates sepsis-induced acute lung injury via regulating Hippo/Rho/PI3K/NF-κB signaling pathway[J]. Int J Mol Sci, 2023, 24 (9): 7930.
19
Margaria JP, Moretta L, Alves-Filho JC, et al. PI3K signaling in mechanisms and treatments of pulmonary fibrosis following sepsis and acute lung injury[J]. Biomedicines, 2022, 10 (4): 756.
20
Hu X, Xu Q, Wan H, et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis[J]. Lab Invest, 2020, 100 (6): 801-811.
21
Deleyto-Seldas N, Efeyan A. The mTOR-autophagy axis and the control of metabolism[J]. Front Cell Dev Biol, 2021 (9): 655731.
22
Liao SX, Sun PP, Gu YH, et al. Autophagy and pulmonary disease[J]. Ther Adv Respir Dis, 2019 (13): 1753466619890538.
23
Li J, Li M, Li L, et al. Hydrogen sulfide attenuates ferroptosis and stimulates autophagy by blocking mTOR signaling in sepsis-induced acute lung injury[J]. Mol Immunol, 2022 (141): 318-327.
24
Wei X, Yi X, Lv H, et al. MicroRNA-377-3p released by mesenchymal stem cell exosomes ameliorates lipopolysaccharide-induced acute lung injury by targeting RPTOR to induce autophagy[J]. Cell Death Dis, 2020, 11 (8): 657.
25
Xu F, Yuan J, Tian S, et al. MicroRNA-92a serves as a risk factor in sepsis-induced ARDS and regulates apoptosis and cell migration in lipopolysaccharide-induced HPMEC and A549 cell injury[J]. Life Sci, 2020 (256): 117957.
26
Wang Z, Guo Z, Wang X, et al. Reduning alleviates sepsis-induced acute lung injury by reducing apoptosis of pulmonary microvascular endothelial cells[J]. Front Immunol, 2023 (14): 1196350.
27
Peng F, Chang W, Sun Q, et al. HGF alleviates septic endothelial injury by inhibiting pyroptosis via the mTOR signalling pathway[J]. Respir Res, 2020, 21 (1): 215.
28
Capece D, Verzella D, Flati I, et al. NF-κB: blending metabolism, immunity, and inflammation[J]. Trends Immunol, 2022, 43 (9): 757-775.
29
Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5 (1): 209.
30
Alharbi KS, Fuloria NK, Fuloria S, et al. Nuclear factor-kappa B and its role in inflammatory lung disease[J]. Chem Biol Interact, 2021 (345): 109568.
31
Millar MW, Fazal F, Rahman A. Therapeutic targeting of NF-κB in acute lung injury: a double-edged sword[J]. Cells, 2022, 11 (20): 3317.
32
Sun B, Bai L, Li Q, et al. Knockdown of angiopoietin-like 4 suppresses sepsis-induced acute lung injury by blocking the NF-κB pathway activation and hindering macrophage M1 polarization and pyroptosis[J]. Toxicol In Vitro, 2024 (94): 105709.
33
Chang B, Wang Z, Cheng H, et al. Acacetin protects against sepsis-induced acute lung injury by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis[J]. Innate Immun, 2024, 30 (1): 11-20.
34
Wang R, Li Q, Wu P, et al. Fe-capsaicin nanozymes attenuate sepsis-induced acute lung injury via NF-κB signaling[J]. Int J Nanomedicine, 2024 (19): 73-90.
35
Zhang X, Wang X, Sun L, et al. Tofacitinib reduces acute lung injury and improves survival in a rat model of sepsis by inhibiting the JAK-STAT/NF-κB pathway[J]. J Inflamm (Lond), 2023, 20 (1): 5.
36
Philips RL, Wang Y, Cheon H, et al. The JAK-STAT pathway at 30: much learned, much more to do[J]. Cell, 2022, 185 (21): 3857-3876.
37
Clere-Jehl R, Mariotte A, Meziani F, et al. JAK-STAT targeting offers novel therapeutic opportunities in sepsis[J]. Trends Mol Med, 2020, 26 (11): 987-1002.
38
Zhang Y, Gao Z, Jiang F, et al. JAK-STAT signaling as an ARDS therapeutic target: status and future trends[J]. Biochem Pharmacol, 2023 (208): 115382.
39
Lou Y, Huang Z, Wu H, et al. Tranilast attenuates lipopolysaccharide-induced lung injury via the CXCR4/JAK2/STAT3 signaling pathway[J]. Mol Med Rep, 2022, 26 (1): 220.
40
Lin Y, Wongkrajang K, Shen X, et al. Discovery of diarylheptanoids that activate α7 nAchR-JAK2-STAT3 signaling in macrophages with anti-inflammatory activity in vitro and in vivo[J]. Bioorg Med Chem, 2022 (66): 116811.
41
Puigdevall L, Michiels C, Stewardson C, et al. JAK/STAT: why choose a classical or an alternative pathway when you can have both?[J]. J Cell Mol Med, 2022, 26 (7): 1865-1875.
42
Tao Y, Xu X, Yang B, et al. Mitigation of sepsis-induced acute lung injury by BMSC-derived exosomal miR-125b-5p through STAT3-mediated suppression of macrophage pyroptosis[J]. Int J Nanomedicine, 2023 (18): 7095-7113.
43
Qian T, Qi B, Fei Y, et al. PLD2 deletion alleviates disruption of tight junctions in sepsis-induced ALI by regulating PA/STAT3 phosphorylation pathway[J]. Int Immunopharmacol, 2023 (114): 109561.
44
Ahmadi A, Ahrari S, Salimian J, et al. p38 MAPK signaling in chronic obstructive pulmonary disease pathogenesis and inhibitor therapeutics[J]. Cell Commun Signal, 2023, 21 (1): 314.
45
Shen J, Ma X. miR-374a-5p alleviates sepsis-induced acute lung injury by targeting ZEB1 via the p38 MAPK pathway[J]. Exp Ther Med, 2022, 24 (3): 564.
46
Zhou KL, He YR, Liu YJ, et al. IL-17A/p38 signaling pathway induces alveolar epithelial cell pyroptosis and hyperpermeability in sepsis-induced acute lung injury by activating NLRP3 inflammasome[J]. Adv Biol (Weinh), 2023, 7 (12): e2300220.
47
Zhao Y, Kuca K, Wu W, et al. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases[J]. Alzheimers Dement, 2022, 18 (1): 152-158.
48
Zhang ZK, Zhou Y, Cao J, et al. Rosmarinic acid ameliorates septic-associated mortality and lung injury in mice via GRP78/IRE1α/JNK pathway[J]. J Pharm Pharmacol, 2021, 73 (7): 916-921.
49
Zheng Q, Wang YC, Liu QX, et al. FK866 attenuates sepsis-induced acute lung injury through c-jun-N-terminal kinase (JNK)-dependent autophagy[J]. Life Sci, 2020 (250): 117551.
50
Yang J, Do-Umehara HC, Zhang Q, et al. miR-221-5p-mediated downregulation of JNK2 aggravates acute lung injury[J]. Front Immunol, 2021 (12): 700933.
51
Liao J, Yang J, Li X, et al. Discovery of the diphenyl 6-oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide analogue J27 for the treatment of acute lung injury and sepsis by targeting JNK2 and inhibiting the JNK2-NF-κB/MAPK pathway[J]. J Med Chem, 2023, 66 (17): 12304-12323.
52
Liang J, Zhang J, Fan J, et al. ANXA3 interference inactivates ERK/ELK1 pathway to mitigate inflammation and apoptosis in sepsis-associated acute lung injury[J]. Mol Immunol, 2024 (167): 25-33.
No related articles found!
阅读次数
全文


摘要