切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2023, Vol. 16 ›› Issue (05) : 422 -427. doi: 10.3877/cma.j.issn.1674-6880.2023.05.013

综述

蛋白质组学在急性呼吸窘迫综合征中的研究进展
刘婵, 杨杰, 贺雨, 艾青, 史源()   
  1. 400014 重庆,重庆医科大学附属儿童医院新生儿诊治中心
    653100 云南玉溪,玉溪市儿童医院新生儿科
  • 收稿日期:2022-10-30 出版日期:2023-10-31
  • 通信作者: 史源
  • 基金资助:
    重庆市技术创新与应用发展专项重点项目(CSTC2021jscx-gksb-N0015)
  • Received:2022-10-30 Published:2023-10-31
引用本文:

刘婵, 杨杰, 贺雨, 艾青, 史源. 蛋白质组学在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华危重症医学杂志(电子版), 2023, 16(05): 422-427.

急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)是一组以急性严重低氧血症、双肺弥漫性浸润和肺顺应性下降为主要特点的临床综合征[1]。自ARDS被首次提出,其定义与诊断标准不断发展和完善,2012年制定的柏林定义已被学术界普遍接受[2]。尽管ARDS的临床管理较前有了许多进步,但遗憾的是,其病死率仍然居高不下。最近一项针对50个国家和地区的大型流行病学调查显示,ARDS患者的住院病死率可高达35% ~ 46%[3]。目前,ARDS的治疗主要依靠肺保护性机械通气,尚缺乏有效的药物治疗,这在很大程度上是因为ARDS的病因和病理机制复杂,临床表现、治疗反应和预后等方面存在差异,具有异质性[4],针对某一原发因素或单一致病途径的治疗往往很难改善患者预后。

1
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome[J]. Lancet, 2021, 398 (10300): 622-637.
2
ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition[J]. JAMA, 2012, 307 (23): 2526-2533.
3
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315 (8): 788-800.
4
Beitler JR, Thompson BT, Baron RM, et al. Advancing precision medicine for acute respiratory distress syndrome[J]. Lancet Respir Med, 2022, 10 (1): 107-120.
5
O'Farrell PH. High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem, 1975, 250 (10): 4007-4021.
6
Tanaka K, Waki H, Ido Y, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrom, 1988, 2 (8): 151-153.
7
Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules[J]. Science, 1989, 246 (4926): 64-71.
8
Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects[J]. Mol Cell Proteomics, 2002, 1 (11): 845-867.
9
Kamiyama I, Kohno M, Kamiya K, et al. A new technique of bronchial microsampling and proteomic analysis of epithelial lining fluid in a rat model of acute lung injury[J]. Mol Immunol, 2014, 59 (2): 217-225.
10
Letsiou E, Sammani S, Zhang W, et al. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding[J]. Am J Respir Cell Mol Biol, 2015, 52 (2): 193-204.
11
Downs CA, Johnson NM, Tsaprailis G, et al. RAGE-induced changes in the proteome of alveolar epithelial cells[J]. J Proteomics, 2018 (177): 11-20.
12
Gamboni F, Anderson C, Mitra S, et al. Hypertonic saline primes activation of the p53-p21 signaling axis in human small airway epithelial cells that prevents inflammation induced by pro-inflammatory cytokines[J]. J Proteome Res, 2016, 15 (10): 3813-3826.
13
Shaikh SB, Najar MA, Prabhu A, et al. The unique molecular targets associated antioxidant and antifibrotic activity of curcumin in in vitro model of acute lung injury: a proteomic approach[J]. Biofactors, 2021, 47 (4): 627-644.
14
Janga H, Cassidy L, Wang F, et al. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides[J]. J Cell Mol Med, 2018, 22 (2): 982-998.
15
Guo Y, Liu Y, Zhao S, et al. Oxidative stress-induced FABP5 S-glutathionylation protects against acute lung injury by suppressing inflammation in macrophages[J]. Nat Commun, 2021, 12 (1): 7094.
16
Tao Z, Meng X, Han YQ, et al. Therapeutic mechanistic studies of ShuFengJieDu capsule in an acute lung injury animal model using quantitative proteomics technology[J]. J Proteome Res, 2017, 16 (11): 4009-4019.
17
Dong H, Li J, Lv Y, et al. Comparative analysis of the alveolar macrophage proteome in ALI/ARDS patients between the exudative phase and recovery phase[J]. BMC Immunol, 2013 (14): 25.
18
Bowler RP, Duda B, Chan ED, et al. Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 286 (6): L1095-L1104.
19
Schnapp LM, Donohoe S, Chen J, et al. Mining the acute respiratory distress syndrome proteome: identification of the insulin-like growth factor (IGF)/IGF-binding protein-3 pathway in acute lung injury[J]. Am J Pathol, 2006, 169 (1): 86-95.
20
de Torre C, Ying SX, Munson PJ, et al. Proteomic analysis of inflammatory biomarkers in bronchoalveolar lavage[J]. Proteomics, 2006, 6 (13): 3949-3957.
21
Ménoret A, Kumar S, Vella AT. Cytochrome b5 and cytokeratin 17 are biomarkers in bronchoalveolar fluid signifying onset of acute lung injury[J]. PLoS One, 2012, 7 (7): e40184.
22
Liu D, Mao P, Huang Y, et al. Proteomic analysis of lung tissue in a rat acute lung injury model: identification of PRDX1 as a promoter of inflammation[J]. Mediators Inflamm, 2014 (2014): 469358.
23
Chen S, Zhang Y, Zhan Q. TMT-based proteomics analysis of LPS-induced acute lung injury[J]. Exp Lung Res, 2021, 47 (8): 402-415.
24
Xu X, Zhu Q, Zhang R, et al. ITRAQ-based proteomics analysis of acute lung injury induced by oleic acid in mice[J]. Cell Physiol Biochem, 2017, 44 (5): 1949-1964.
25
Ji Z, Liu H, Fang L, et al. Use of immunoproteomics to identify immunogenic proteins in a rat model of acute respiratory distress syndrome[J]. Mol Med Rep, 2017, 16 (5): 7625-7632.
26
Ball L, Silva PL, Rocco PRM, et al. A critical approach to personalised medicine in ARDS[J]. Lancet Respir Med, 2020, 8 (3): 218-219.
27
Jabaudon M, Blondonnet R, Audard J, et al. Recent directions in personalised acute respiratory distress syndrome medicine[J]. Anaesth Crit Care Pain Med, 2018, 37 (3): 251-258.
28
Chen X, Shan Q, Jiang L, et al. Quantitative proteomic analysis by iTRAQ for identification of candidate biomarkers in plasma from acute respiratory distress syndrome patients[J]. Biochem Biophys Res Commun, 2013, 441 (1): 1-6.
29
Yue X, Guidry JJ. Differential protein expression profiles of bronchoalveolar lavage fluid following lipopolysaccharide-induced direct and indirect lung injury in mice[J]. Int J Mol Sci, 2019, 20 (14): 3401.
30
Chen C, Shi L, Li Y, et al. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia[J]. Cell Biol Toxicol, 2016, 32 (3): 169-184.
31
Yehya N, Fazelinia H, Taylor DM, et al. Differentiating children with sepsis with and without acute respiratory distress syndrome using proteomics[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 322 (3): L365-L372.
32
Yehya N, Fazelinia H, Lawrence GG, et al. Plasma nucleosomes are associated with mortality in pediatric acute respiratory distress syndrome[J]. Crit Care Med, 2021, 49 (7): 1149-1158.
33
Ren S, Chen X, Jiang L, et al. Deleted in malignant brain tumors 1 protein is a potential biomarker of acute respiratory distress syndrome induced by pneumonia[J]. Biochem Biophys Res Commun, 2016, 478 (3): 1344-1349.
34
Jain KK. Role of proteomics in the development of personalized medicine[J]. Adv Protein Chem Struct Biol, 2016 (102): 41-52.
35
Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis[J]. Lancet Respir Med, 2014, 2 (12): 1016-1026.
36
Islam D, Huang Y, Fanelli V, et al. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury[J]. Am J Respir Crit Care Med, 2019, 199 (10): 1214-1224.
37
Shaikh SB, Najar MA, Prasad TSK, et al. Comparative protein profiling reveals the inhibitory role of curcumin on IL-17A mediated minichromosome maintenance (MCM) proteins as novel putative markers for acute lung injury in vivo[J]. Biomed Pharmacother, 2021 (141): 111715.
38
Xu C, Zhang J, Liu J, et al. Proteomic analysis reveals the protective effects of emodin on severe acute pancreatitis induced lung injury by inhibiting neutrophil proteases activity[J]. J Proteomics, 2020 (220): 103760.
39
Sun Z, Li L, Qu J, et al. Proteomic analysis of therapeutic effects of Qingyi pellet on rodent severe acute pancreatitis-associated lung injury[J]. Biomed Pharmacother, 2019 (118): 109300.
40
Luo CY, Li Y, Li X, et al. Alleviation of lipopolysaccharide-induced acute respiratory distress syndrome in rats by Yiqi Huayu Jiedu decoction: a tandem mass tag-based proteomics study[J]. Front Pharmacol, 2020 (11): 1215.
41
Xu X, Jia C, Luo S, et al. Effect of HA330 resin-directed hemoadsorption on a porcine acute respiratory distress syndrome model[J]. Ann Intensive Care, 2017, 7 (1): 84.
42
Bian Y, Qin C, Xin Y, et al. Itraq-based quantitative proteomic analysis of lungs in murine polymicrobial sepsis with hydrogen gas treatment[J]. Shock, 2018, 49 (2): 187-195.
43
Bhargava M, Becker TL, Viken KJ, et al. Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors[J]. PLoS One, 2014, 9 (10): e109713.
44
Bhargava M, Viken K, Wang Q, et al. Bronchoalveolar lavage fluid protein expression in acute respiratory distress syndrome provides insights into pathways activated in subjects with different outcomes[J]. Sci Rep, 2017, 7 (1): 7464.
45
Dong X, Zhu Z, Wei Y, et al. Plasma insulin-like growth factor binding protein 7 contributes causally to ARDS 28-day mortality: evidence from multistage mendelian randomization[J]. Chest, 2021, 159 (3): 1007-1018.
46
Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials[J]. Lancet Respir Med, 2014, 2 (8): 611-620.
No related articles found!
阅读次数
全文


摘要