1 |
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome[J]. Lancet, 2021, 398 (10300): 622-637.
|
2 |
ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition[J]. JAMA, 2012, 307 (23): 2526-2533.
|
3 |
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315 (8): 788-800.
|
4 |
Beitler JR, Thompson BT, Baron RM, et al. Advancing precision medicine for acute respiratory distress syndrome[J]. Lancet Respir Med, 2022, 10 (1): 107-120.
|
5 |
O'Farrell PH. High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem, 1975, 250 (10): 4007-4021.
|
6 |
Tanaka K, Waki H, Ido Y, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrom, 1988, 2 (8): 151-153.
|
7 |
Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules[J]. Science, 1989, 246 (4926): 64-71.
|
8 |
Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects[J]. Mol Cell Proteomics, 2002, 1 (11): 845-867.
|
9 |
Kamiyama I, Kohno M, Kamiya K, et al. A new technique of bronchial microsampling and proteomic analysis of epithelial lining fluid in a rat model of acute lung injury[J]. Mol Immunol, 2014, 59 (2): 217-225.
|
10 |
Letsiou E, Sammani S, Zhang W, et al. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding[J]. Am J Respir Cell Mol Biol, 2015, 52 (2): 193-204.
|
11 |
Downs CA, Johnson NM, Tsaprailis G, et al. RAGE-induced changes in the proteome of alveolar epithelial cells[J]. J Proteomics, 2018 (177): 11-20.
|
12 |
Gamboni F, Anderson C, Mitra S, et al. Hypertonic saline primes activation of the p53-p21 signaling axis in human small airway epithelial cells that prevents inflammation induced by pro-inflammatory cytokines[J]. J Proteome Res, 2016, 15 (10): 3813-3826.
|
13 |
Shaikh SB, Najar MA, Prabhu A, et al. The unique molecular targets associated antioxidant and antifibrotic activity of curcumin in in vitro model of acute lung injury: a proteomic approach[J]. Biofactors, 2021, 47 (4): 627-644.
|
14 |
Janga H, Cassidy L, Wang F, et al. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides[J]. J Cell Mol Med, 2018, 22 (2): 982-998.
|
15 |
Guo Y, Liu Y, Zhao S, et al. Oxidative stress-induced FABP5 S-glutathionylation protects against acute lung injury by suppressing inflammation in macrophages[J]. Nat Commun, 2021, 12 (1): 7094.
|
16 |
Tao Z, Meng X, Han YQ, et al. Therapeutic mechanistic studies of ShuFengJieDu capsule in an acute lung injury animal model using quantitative proteomics technology[J]. J Proteome Res, 2017, 16 (11): 4009-4019.
|
17 |
Dong H, Li J, Lv Y, et al. Comparative analysis of the alveolar macrophage proteome in ALI/ARDS patients between the exudative phase and recovery phase[J]. BMC Immunol, 2013 (14): 25.
|
18 |
Bowler RP, Duda B, Chan ED, et al. Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 286 (6): L1095-L1104.
|
19 |
Schnapp LM, Donohoe S, Chen J, et al. Mining the acute respiratory distress syndrome proteome: identification of the insulin-like growth factor (IGF)/IGF-binding protein-3 pathway in acute lung injury[J]. Am J Pathol, 2006, 169 (1): 86-95.
|
20 |
de Torre C, Ying SX, Munson PJ, et al. Proteomic analysis of inflammatory biomarkers in bronchoalveolar lavage[J]. Proteomics, 2006, 6 (13): 3949-3957.
|
21 |
Ménoret A, Kumar S, Vella AT. Cytochrome b5 and cytokeratin 17 are biomarkers in bronchoalveolar fluid signifying onset of acute lung injury[J]. PLoS One, 2012, 7 (7): e40184.
|
22 |
Liu D, Mao P, Huang Y, et al. Proteomic analysis of lung tissue in a rat acute lung injury model: identification of PRDX1 as a promoter of inflammation[J]. Mediators Inflamm, 2014 (2014): 469358.
|
23 |
Chen S, Zhang Y, Zhan Q. TMT-based proteomics analysis of LPS-induced acute lung injury[J]. Exp Lung Res, 2021, 47 (8): 402-415.
|
24 |
Xu X, Zhu Q, Zhang R, et al. ITRAQ-based proteomics analysis of acute lung injury induced by oleic acid in mice[J]. Cell Physiol Biochem, 2017, 44 (5): 1949-1964.
|
25 |
Ji Z, Liu H, Fang L, et al. Use of immunoproteomics to identify immunogenic proteins in a rat model of acute respiratory distress syndrome[J]. Mol Med Rep, 2017, 16 (5): 7625-7632.
|
26 |
Ball L, Silva PL, Rocco PRM, et al. A critical approach to personalised medicine in ARDS[J]. Lancet Respir Med, 2020, 8 (3): 218-219.
|
27 |
Jabaudon M, Blondonnet R, Audard J, et al. Recent directions in personalised acute respiratory distress syndrome medicine[J]. Anaesth Crit Care Pain Med, 2018, 37 (3): 251-258.
|
28 |
Chen X, Shan Q, Jiang L, et al. Quantitative proteomic analysis by iTRAQ for identification of candidate biomarkers in plasma from acute respiratory distress syndrome patients[J]. Biochem Biophys Res Commun, 2013, 441 (1): 1-6.
|
29 |
Yue X, Guidry JJ. Differential protein expression profiles of bronchoalveolar lavage fluid following lipopolysaccharide-induced direct and indirect lung injury in mice[J]. Int J Mol Sci, 2019, 20 (14): 3401.
|
30 |
Chen C, Shi L, Li Y, et al. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia[J]. Cell Biol Toxicol, 2016, 32 (3): 169-184.
|
31 |
Yehya N, Fazelinia H, Taylor DM, et al. Differentiating children with sepsis with and without acute respiratory distress syndrome using proteomics[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 322 (3): L365-L372.
|
32 |
Yehya N, Fazelinia H, Lawrence GG, et al. Plasma nucleosomes are associated with mortality in pediatric acute respiratory distress syndrome[J]. Crit Care Med, 2021, 49 (7): 1149-1158.
|
33 |
Ren S, Chen X, Jiang L, et al. Deleted in malignant brain tumors 1 protein is a potential biomarker of acute respiratory distress syndrome induced by pneumonia[J]. Biochem Biophys Res Commun, 2016, 478 (3): 1344-1349.
|
34 |
Jain KK. Role of proteomics in the development of personalized medicine[J]. Adv Protein Chem Struct Biol, 2016 (102): 41-52.
|
35 |
Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis[J]. Lancet Respir Med, 2014, 2 (12): 1016-1026.
|
36 |
Islam D, Huang Y, Fanelli V, et al. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury[J]. Am J Respir Crit Care Med, 2019, 199 (10): 1214-1224.
|
37 |
Shaikh SB, Najar MA, Prasad TSK, et al. Comparative protein profiling reveals the inhibitory role of curcumin on IL-17A mediated minichromosome maintenance (MCM) proteins as novel putative markers for acute lung injury in vivo[J]. Biomed Pharmacother, 2021 (141): 111715.
|
38 |
Xu C, Zhang J, Liu J, et al. Proteomic analysis reveals the protective effects of emodin on severe acute pancreatitis induced lung injury by inhibiting neutrophil proteases activity[J]. J Proteomics, 2020 (220): 103760.
|
39 |
Sun Z, Li L, Qu J, et al. Proteomic analysis of therapeutic effects of Qingyi pellet on rodent severe acute pancreatitis-associated lung injury[J]. Biomed Pharmacother, 2019 (118): 109300.
|
40 |
Luo CY, Li Y, Li X, et al. Alleviation of lipopolysaccharide-induced acute respiratory distress syndrome in rats by Yiqi Huayu Jiedu decoction: a tandem mass tag-based proteomics study[J]. Front Pharmacol, 2020 (11): 1215.
|
41 |
Xu X, Jia C, Luo S, et al. Effect of HA330 resin-directed hemoadsorption on a porcine acute respiratory distress syndrome model[J]. Ann Intensive Care, 2017, 7 (1): 84.
|
42 |
Bian Y, Qin C, Xin Y, et al. Itraq-based quantitative proteomic analysis of lungs in murine polymicrobial sepsis with hydrogen gas treatment[J]. Shock, 2018, 49 (2): 187-195.
|
43 |
Bhargava M, Becker TL, Viken KJ, et al. Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors[J]. PLoS One, 2014, 9 (10): e109713.
|
44 |
Bhargava M, Viken K, Wang Q, et al. Bronchoalveolar lavage fluid protein expression in acute respiratory distress syndrome provides insights into pathways activated in subjects with different outcomes[J]. Sci Rep, 2017, 7 (1): 7464.
|
45 |
Dong X, Zhu Z, Wei Y, et al. Plasma insulin-like growth factor binding protein 7 contributes causally to ARDS 28-day mortality: evidence from multistage mendelian randomization[J]. Chest, 2021, 159 (3): 1007-1018.
|
46 |
Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials[J]. Lancet Respir Med, 2014, 2 (8): 611-620.
|