切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2023, Vol. 16 ›› Issue (05) : 414 -421. doi: 10.3877/cma.j.issn.1674-6880.2023.05.012

综述

脓毒症相关急性肾损伤诊断和评估指标的研究进展
闫美辰, 庞明敏, 刘光凤, 许娜娜, 郑玥, 范少华, 王昊()   
  1. 250012 济南,山东大学齐鲁医院重症医学科
    250012 济南,山东大学齐鲁医院重症医学科;现工作单位为费县人民医院重症医学科
    250012 济南,山东大学齐鲁医院心外监护室
    250012 济南,山东大学齐鲁医院急诊科
    250013 济南,济南市中心医院重症医学科
  • 收稿日期:2022-11-08 出版日期:2023-10-31
  • 通信作者: 王昊
  • 基金资助:
    国家自然科学基金资助项目(81873927、82072231); 山东省泰山学者计划(tsqn202103165); 山东大学临床研究项目(2020SDUCRCC013)
  • Received:2022-11-08 Published:2023-10-31
引用本文:

闫美辰, 庞明敏, 刘光凤, 许娜娜, 郑玥, 范少华, 王昊. 脓毒症相关急性肾损伤诊断和评估指标的研究进展[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 414-421.

脓毒症被定义为宿主对感染反应失调引起的危及生命的器官功能障碍[1],具有较高的发病率和病死率,严重影响危重期患者的生命健康,增加患者的心理及经济负担,导致远期预后不良。据《全球疾病负担研究》估计,2017年脓毒症导致的死亡占全球可预防死亡的近20%[2]。其中,肾脏是脓毒症最常累及的器官之一,大约有60%的脓毒症患者伴发急性肾损伤(acute kidney injury,AKI)。当合并AKI时,脓毒症患者的病死率显著升高[3-4]。同时,与其他原因引起的AKI相比,脓毒症相关急性肾损伤(sepsis associated acute kidney injury,S-AKI)往往预后更差[5]。如未及时识别和处理S-AKI,患者将有可能发展成慢性肾脏病,增加心血管并发症的风险[6]

1
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 801-810.
2
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395 (10219): 200-211.
3
Bagshaw SM, Lapinsky S, Dial S, et al. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy[J]. Intensive Care Med, 2009, 35 (5): 871-881.
4
Petejova N, Martinek A, Zadrazil J, et al. Acute kidney injury in septic patients treated by selected nephrotoxic antibiotic agents—pathophysiology and biomarkers—a review[J]. Int J Mol Sci, 2020, 21 (19): 7115.
5
Bagshaw SM, Uchino S, Bellomo R, et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes[J]. Clin J Am Soc Nephrol, 2007, 2 (3): 431-439.
6
Pickkers P, Darmon M, Hoste E, et al. Acute kidney injury in the critically ill: an updated review on pathophysiology and management[J]. Intensive Care Med, 2021, 47 (8): 835-850.
7
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8 (4): R204-R212.
8
Bellomo R, Kellum JA, Ronco C, et al. Acute kidney injury in sepsis[J]. Intensive Care Med, 2017, 43 (6): 816-828.
9
Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study[J]. Intensive Care Med, 2015, 41 (8): 1411-1423.
10
Chawla LS, Eggers PW, Star RA, et al. Acute kidney injury and chronic kidney disease as interconnected syndromes[J]. N Engl J Med, 2014, 371 (1): 58-66.
11
Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury[J]. Am J Kidney Dis, 2013, 61 (5): 649-672.
12
Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment[J]. Kidney Int, 2019, 96 (5): 1083-1099.
13
Jin K, Murugan R, Sileanu FE, et al. Intensive monitoring of urine output is associated with increased detection of acute kidney injury and improved outcomes[J]. Chest, 2017, 152 (5): 972-979.
14
Quan S, Pannu N, Wilson T, et al. Prognostic implications of adding urine output to serum creatinine measurements for staging of acute kidney injury after major surgery: a cohort study[J]. Nephrol Dial Transplant, 2016, 31 (12): 2049-2056.
15
Koratala A, Kazory A. An introduction to point-of-care ultrasound: laennec to lichtenstein[J]. Adv Chronic Kidney Dis, 2021, 28 (3): 193-199.
16
Parulekar P, Neil-Gallacher E, Harrison A. Intensive care unit physician-delivered point of care renal tract ultrasound in acute kidney injury is feasible[J]. J Intensive Care Soc, 2018, 19 (4): 313-318.
17
张晔,施乾坤,穆心苇.超声诊断重症患者急性肾损伤的新进展[J/CD].中华危重症医学杂志(电子版)20147(2):135-139.
18
O'neill WC. Renal resistive index: a case of mistaken identity[J]. Hypertension, 2014, 64 (5): 915-917.
19
Andrew BY, Andrew EY, Cherry AD, et al. Intraoperative renal resistive index as an acute kidney injury biomarker: development and validation of an automated analysis algorithm[J]. J Cardiothorac Vasc Anesth, 2018, 32 (5): 2203-2209.
20
Lerolle N, Guérot E, Faisy C, et al. Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index[J]. Intensive Care Med, 2006, 32 (10): 1553-1559.
21
Cherry AD, Hauck JN, Andrew BY, et al. Intraoperative renal resistive index threshold as an acute kidney injury biomarker[J]. J Clin Anesth, 2020 (61): 109626.
22
Schneider AG, Goodwin MD, Schelleman A, et al. Contrast-enhanced ultrasound to evaluate changes in renal cortical perfusion around cardiac surgery: a pilot study[J]. Crit Care, 2013, 17 (4): R138.
23
Schnell D, Darmon M. Bedside Doppler ultrasound for the assessment of renal perfusion in the ICU: advantages and limitations of the available techniques[J]. Crit Ultrasound J, 2015, 7 (1): 24.
24
Yu A, Zhao Q, Qu Y, et al. Renal Doppler ultrasound in the evaluation of renal function in patients with sepsis[J]. Appl Bionics Biomech, 2022 (2022): 3472405.
25
Chen XK, Huang LF, Wang XT, et al. Value of power Doppler ultrasound to evaluate acute kidney injury[J]. Zhonghua Yi Xue Za Zhi, 2012, 92 (47): 3354-3357.
26
McCullough PA, Shaw AD, Haase M, et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference[J]. Contrib Nephrol, 2013 (182): 13-29.
27
Zhang WR, Parikh CR. Biomarkers of acute and chronic kidney disease[J]. Annu Rev Physiol, 2019 (81): 309-333.
28
Martensson J, Bellomo R. The rise and fall of NGAL in acute kidney injury[J]. Blood Purif, 2014, 37 (4): 304-310.
29
Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury[J]. J Am Soc Nephrol, 2003, 14 (10): 2534-2543.
30
Matsa R, Ashley E, Sharma V, et al. Plasma and urine neutrophil gelatinase-associated lipocalin in the diagnosis of new onset acute kidney injury in critically ill patients[J]. Crit Care, 2014, 18 (4): R137.
31
Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery[J]. Lancet, 2005, 365 (9466): 1231-1238.
32
Aydogdu M, Gürsel G, Sancak B, et al. The use of plasma and urine neutrophil gelatinase associated lipocalin (NGAL) and Cystatin C in early diagnosis of septic acute kidney injury in critically ill patients[J]. Dis Markers, 2013, 34 (4): 237-246.
33
de Geus HR, Betjes MG, Schaick R, et al. Plasma NGAL similarly predicts acute kidney injury in sepsis and nonsepsis[J]. Biomark Med, 2013, 7 (3): 415-421.
34
Katagiri D, Doi K, Matsubara T, et al. New biomarker panel of plasma neutrophil gelatinase-associated lipocalin and endotoxin activity assay for detecting sepsis in acute kidney injury[J]. J Crit Care, 2013, 28 (5): 564-570.
35
孟东亮,邢海波,茅尧生,等.中性粒细胞明胶酶相关脂质运载蛋白对脓毒症继发急性肾损伤患者的早期预测价值[J/CD].中华危重症医学杂志(电子版)20158(4):224-229.
36
Khawaja S, Jafri L, Siddiqui I, et al. The utility of neutrophil gelatinase-associated Lipocalin (NGAL) as a marker of acute kidney injury (AKI) in critically ill patients[J]. Biomark Res, 2019 (7): 4.
37
Yang L, Brooks CR, Xiao S, et al. KIM-1-mediated phagocytosis reduces acute injury to the kidney[J]. J Clin Invest, 2015, 125 (4): 1620-1636.
38
Amin RP, Vickers AE, Sistare F, et al. Identification of putative gene based markers of renal toxicity[J]. Environ Health Perspect, 2004, 112 (4): 465-479.
39
Vaidya VS, Ozer JS, Dieterle F, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies[J]. Nat Biotechnol, 2010, 28 (5): 478-485.
40
Shao X, Tian L, Xu W, et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis[J]. PLoS One, 2014, 9 (1): e84131.
41
Liangos O, Perianayagam MC, Vaidya VS, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure[J]. J Am Soc Nephrol, 2007, 18 (3): 904-912.
42
Tu Y, Wang H, Sun R, et al. Urinary netrin-1 and KIM-1 as early biomarkers for septic acute kidney injury[J]. Ren Fail, 2014, 36 (10): 1559-1563.
43
Srisawat N, Kellum JA. The role of biomarkers in acute kidney injury[J]. Crit Care Clin, 2020, 36 (1): 125-140.
44
Doi K, Noiri E, Maeda-Mamiya R, et al. Urinary L-type fatty acid-binding protein as a new biomarker of sepsis complicated with acute kidney injury[J]. Crit Care Med, 2010, 38 (10): 2037-2042.
45
Kamijo A, Sugaya T, Hikawa A, et al. Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules[J]. Am J Pathol, 2004, 165 (4): 1243-1255.
46
Parikh CR, Thiessen-Philbrook H, Garg AX, et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery[J]. Clin J Am Soc Nephrol, 2013, 8 (7): 1079-1088.
47
Ferguson MA, Vaidya VS, Waikar SS, et al. Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury[J]. Kidney Int, 2010, 77 (8): 708-714.
48
Portilla D, Dent C, Sugaya T, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery[J]. Kidney Int, 2008, 73 (4): 465-472.
49
Nakamura T, Sugaya T, Koide H. Urinary liver-type fatty acid-binding protein in septic shock: effect of polymyxin B-immobilized fiber hemoperfusion[J]. Shock, 2009, 31 (5): 454-459.
50
Bihorac A, Kellum JA. Acute kidney injury in 2014: a step towards understanding mechanisms of renal repair[J]. Nat Rev Nephrol, 2015, 11 (2): 74-75.
51
庄苏园,聂时南.脓毒症相关急性肾损伤早期生物标记物的研究进展[J].医学研究生学报202134(2):211-216.
52
Devarajan P. Update on mechanisms of ischemic acute kidney injury[J]. J Am Soc Nephrol, 2006, 17 (6): 1503-1520.
53
Joannidis M, Forni LG, Haase M, et al. Use of cell cycle arrest biomarkers in conjunction with classical markers of acute kidney injury[J]. Crit Care Med, 2019, 47 (10): e820-e826.
54
Husain-Syed F, Ferrari F, Sharma A, et al. Persistent decrease of renal functional reserve in patients after cardiac surgery-associated acute kidney injury despite clinical recovery[J]. Nephrol Dial Transplant, 2019, 34 (2): 308-317.
55
Haase M, Kellum JA, Ronco C. Subclinical AKI—an emerging syndrome with important consequences[J]. Nat Rev Nephrol, 2012, 8 (12): 735-739.
56
Su LJ, Li YM, Kellum JA, et al. Predictive value of cell cycle arrest biomarkers for cardiac surgery-associated acute kidney injury: a meta-analysis[J]. Br J Anaesth, 2018, 121 (2): 350-357.
57
Aydogdu M, Boyaci N, Yüksel S, et al. A promising marker in early diagnosis of septic acute kidney injury of critically ill patients: urine insulin like growth factor binding protein-7[J]. Scand J Clin Lab Invest, 2016, 76 (5): 402-410.
58
Cuartero M, Ballús J, Sabater J, et al. Cell-cycle arrest biomarkers in urine to predict acute kidney injury in septic and non-septic critically ill patients[J]. Ann Intensive Care, 2017, 7 (1): 92.
59
Honore PM, Nguyen HB, Gong M, et al. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 for risk stratification of acute kidney injury in patients with sepsis[J]. Crit Care Med, 2016, 44 (10): 1851-1860.
60
Kellum JA, Artigas A, Gunnerson KJ, et al. Use of biomarkers to identify acute kidney injury to help detect sepsis in patients with infection[J]. Crit Care Med, 2021, 49 (4): e360-e368.
61
Maiwall R, Kumar A, Bhardwaj A, et al. Cystatin C predicts acute kidney injury and mortality in cirrhotics: a prospective cohort study[J]. Liver Int, 2018, 38 (4): 654-664.
62
付晓菲,刘春生,宗景景,等.脓毒症引发急性肾损伤的生物标志物研究进展[J/CD].中华危重症医学杂志(电子版)201710(1):53-57.
63
Levey AS, Inker LA. Assessment of glomerular filtration rate in health and disease: a state of the art review[J]. Clin Pharmacol Ther, 2017, 102 (3): 405-419.
64
Leelahavanichkul A, Souza AC, Street JM, et al. Comparison of serum creatinine and serum cystatin C as biomarkers to detect sepsis-induced acute kidney injury and to predict mortality in CD-1 mice[J]. Am J Physiol Renal Physiol, 2014, 307 (8): F939-F948.
65
Leem AY, Park MS, Park BH, et al. Value of serum cystatin c measurement in the diagnosis of sepsis-induced kidney injury and prediction of renal function recovery[J]. Yonsei Med J, 2017, 58 (3): 604-612.
66
Ortuno-Andériz F, Cabello-Clotet N, Vidart-Simón N, et al. Cystatin C as an early marker of acute kidney injury in septic shock[J]. Rev Clin Esp (Barc), 2015, 215 (2): 83-90.
67
Xing K, Murthy S, Liles WC, et al. Clinical utility of biomarkers of endothelial activation in sepsis—a systematic review[J]. Crit Care, 2012, 16 (1): R7.
68
Ricciuto DR, dos Santos CC, Hawkes M, et al. Angiopoietin-1 and angiopoietin-2 as clinically informative prognostic biomarkers of morbidity and mortality in severe sepsis[J]. Crit Care Med, 2011, 39 (4): 702-710.
69
Robinson-Cohen C, Katz R, Price BL, et al. Association of markers of endothelial dysregulation Ang1 and Ang2 with acute kidney injury in critically ill patients[J]. Crit Care, 2016, 20 (1): 207.
70
Bouman CS, Forni LG, Joannidis M. Biomarkers and acute kidney injury: dining with the Fisher King?[J]. Intensive Care Med, 2010, 36 (3): 381-384.
71
Novick D, Kim S, Kaplanski G, et al. Interleukin-18, more than a Th1 cytokine[J]. Semin Immunol, 2013, 25 (6): 439-448.
72
Parikh CR, Abraham E, Ancukiewicz M, et al. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit[J]. J Am Soc Nephrol, 2005, 16 (10): 3046-3052.
73
Melnikov VY, Faubel S, Siegmund B, et al. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice[J]. J Clin Invest, 2002, 110 (8): 1083-1091.
74
Parikh CR, Jani A, Melnikov VY, et al. Urinary interleukin-18 is a marker of human acute tubular necrosis[J]. Am J Kidney Dis, 2004, 43 (3): 405-414.
75
Luo Q, Zhou F, Dong H, et al. Implication of combined urinary biomarkers in early diagnosis of acute kidney injury following percutaneous coronary intervention[J]. Clin Nephrol, 2013, 79 (2): 85-92.
76
Zheng J, Xiao Y, Yao Y, et al. Comparison of urinary biomarkers for early detection of acute kidney injury after cardiopulmonary bypass surgery in infants and young children[J]. Pediatr Cardiol, 2013, 34 (4): 880-886.
77
Lin X, Yuan J, Zhao Y, et al. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis[J]. J Nephrol, 2015, 28 (1): 7-16.
78
Ataie-Kachoie P, Pourgholami MH, Morris DL. Inhibition of the IL-6 signaling pathway: a strategy to combat chronic inflammatory diseases and cancer[J]. Cytokine Growth Factor Rev, 2013, 24 (2): 163-173.
79
Ataie-Kachoie P, Pourgholami MH, Richardson DR, et al. Gene of the month: interleukin 6 (IL-6)[J]. J Clin Pathol, 2014, 67 (11): 932-937.
80
Holly MK, Dear JW, Hu X, et al. Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure[J]. Kidney Int, 2006, 70 (3): 496-506.
81
Simmons EM, Himmelfarb J, Sezer MT, et al. Plasma cytokine levels predict mortality in patients with acute renal failure[J]. Kidney Int, 2004, 65 (4): 1357-1365.
82
Groeneveld ABJ, Tacx AN, Bossink AWJ, et al. Circulating inflammatory mediators predict shock and mortality in febrile patients with microbial infection[J]. Clin Immunol, 2003, 106 (2): 106-115.
83
Chawla LS, Seneff MG, Nelson DR, et al. Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis[J]. Clin J Am Soc Nephrol, 2007, 2 (1): 22-30.
84
刘颖,孟超,赵谊,等.自噬蛋白Beclin1及炎症因子表达在脓毒症急性肾损伤中的作用[J/CD].中华危重症医学杂志(电子版)202013(6):401-405.
No related articles found!
阅读次数
全文


摘要