1 |
刘盼盼,王燕,周银超,等.早期膈肌萎缩对急性呼吸窘迫综合征机械通气患者撤机结局的影响研究[J/CD].中华危重症医学杂志(电子版),2022,15(1):36-41.
|
2 |
Malhotra A. Low-tidal-volume ventilation in the acute respiratory distress syndrome[J]. N Engl J Med, 2007, 357 (11): 1113-1120.
|
3 |
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315 (8): 788-800.
|
4 |
Siempos II, Berlin DA. Incidence of acute respiratory distress syndrome[J]. JAMA, 2016, 316 (3): 346.
|
5 |
Karagiannidis C, Brodie D, Strassmann S, et al. Extracorporeal membrane oxygenation: evolving epidemiology and mortality[J]. Intensive Care Med, 2016, 42 (5): 889-896.
|
6 |
Bullen EC, Teijeiro-Paradis R, Fan E. How I select which patients with ARDS should be treated with venovenous extracorporeal membrane oxygenation[J]. Chest, 2020, 158 (3): 1036-1045.
|
7 |
Combes A, Schmidt M, Hodgson CL, et al. Extracorporeal life support for adults with acute respiratory distress syndrome[J]. Intensive Care Med, 2020, 46 (12): 2464-2476.
|
8 |
Marhong JD, Telesnicki T, Munshi L, et al. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey[J]. Ann Am Thorac Soc, 2014, 11 (6): 956-961.
|
9 |
Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial[J]. Lancet, 2009, 374 (9698): 1351-1363.
|
10 |
Davies A, Jones D, Bailey M, et al. Extracorporeal membrane oxygenation for 2009 influenza A (H1N1) acute respiratory sistress syndrome[J]. JAMA, 2009, 302 (17): 1888-1895.
|
11 |
Grasselli G, Scaravilli V, Tubiolo D, et al. Quality of life and lung function in survivors of extracorporeal membrane oxygenation for acute respiratory distress syndrome[J]. Anesthesiology, 2019, 130 (4): 572-580.
|
12 |
Bein T, Weber-Carstens S, Goldmann A, et al. Lower tidal volume strategy (≈ 3 mL/kg) combined with extracorporeal CO2 removal versus 'conventional' protective ventilation (6 mL/kg) in severe ARDS: the prospective randomized Xtravent-study[J]. Intensive Care Med, 2013, 39 (5): 847-856.
|
13 |
Macintyre N. Ventilator management guided by driving pressure: a better way to protect the lungs?[J]. Crit Care Med, 2018, 46 (2): 338-339.
|
14 |
Grieco DL, Chen L, Dres M, et al. Should we use driving pressure to set tidal volume?[J]. Curr Opin Crit Care, 2017, 23 (1): 38-44.
|
15 |
Beitler JR, Malhotra A, Thompson BT. Ventilator-induced lung injury[J]. Clin Chest Med, 2016, 37 (4): 633-646.
|
16 |
Del Sorbo L, Goffi A, Goligher E, et al. Setting mechanical ventilation in ARDS patients during VV-ECMO: where are we?[J]. Minerva Anestesiol, 2015, 81 (12): 1369-1376.
|
17 |
Frohlich S, Boylan J, Mcloughlin P. Hypoxia-induced inflammation in the lung: a potential therapeutic target in acute lung injury?[J]. Am J Resp Cell Mol Biol, 2013, 48 (3): 271-279.
|
18 |
Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition[J]. Crit Care Med, 2012, 40 (2): 510-517.
|
19 |
Confalonieri M, Salton F, Fabiano F. Acute respiratory distress syndrome[J]. Eur Respir Rev, 2017, 26 (144): 160116.
|
20 |
Samary CS, Santos RS, Santos CL, et al. Biological impact of transpulmonary driving pressure in experimental acute respiratory distress syndrome[J]. Anesthesiology, 2015, 123 (2): 423-433.
|
21 |
Del Sorbo L, Goffi A, Tomlinson G, et al. Effect of driving pressure change during extracorporeal membrane oxygenation in adults with acute respiratory distress syndrome: a randomized crossover physiologic study[J]. Crit Care Med, 2020, 48 (12): 1771-1778.
|
22 |
Rozencwajg S, Guihot A, Franchineau G, et al. Ultra-protective ventilation reduces biotrauma in patients on venovenous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome[J]. Crit Care Med, 2019, 47 (11): 1505-1512.
|
23 |
Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome[J]. N Engl J Med, 1998, 338 (6): 347-354.
|
24 |
Fan E, Rubenfeld GD. Driving pressure—the emperor's new clothes[J]. Crit Care Med, 2017, 45 (5): 919-920.
|
25 |
Chiumello D, Carlesso E, Brioni M, et al. Airway driving pressure and lung stress in ARDS patients[J]. Crit Care, 2016 (20): 276.
|
26 |
Ahn HJ, Park M, Kim JA, et al. Driving pressure guided ventilation[J]. Korean J Anesthesiol, 2020, 73 (3): 194-204.
|
27 |
Sahetya SK, Hager DN, Stephens RS, et al. PEEP titration to minimize driving pressure in subjects with ARDS: a prospective physiological study[J]. Respir Care, 2020, 65 (5): 583-589.
|
28 |
Katira BH, Engelberts D, Otulakowski G, et al. Abrupt deflation after sustained inflation causes lung injury[J]. Am J Respir Crit Care Med, 2018, 198 (9): 1165-1176.
|
29 |
Magder S, Slobod D, Assanangkornchai N. Mechanical ventilation in the obese patient: compliance, pleural pressure, and driving pressure[J]. Am J Respir Crit Care Med, 2021, 203 (5): 534-536.
|
30 |
Yoshida T, Brochard L. Ten tips to facilitate understanding and clinical use of esophageal pressure manometry[J]. Intensive Care Med, 2018, 44 (2): 220-222.
|
31 |
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome[J]. N Engl J Med, 2015, 372 (8): 747-755.
|
32 |
Magunia H, Haeberle HA, Henn P, et al. Early driving pressure changes predict outcomes during venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome[J]. Crit Care Res Pract, 2020 (2020): 6958152.
|
33 |
Gupta E, Awsare B, Hirose H, et al. Don't drive blind: driving pressure to optimize ventilator management in ECMO[J]. Lung, 2020, 198 (5): 785-792.
|
34 |
Chiu LC, Hu HC, Hung CY, et al. Dynamic driving pressure associated mortality in acute respiratory distress syndrome with extracorporeal membrane oxygenation[J]. Ann Intensive Care, 2017, 7 (1): 12.
|
35 |
Serpa Neto A, Schmidt M, Azevedo LC, et al. Associations between ventilator settings during extracorporeal membrane oxygenation for refractory hypoxemia and outcome in patients with acute respiratory distress syndrome: a pooled individual patient data analysis: mechanical ventilation during ECMO[J]. Intensive Care Med, 2016, 42 (11): 1672-1684.
|
36 |
Petit M, Mekontso-Dessap A, Masi P, et al. Evaluation of right ventricular function and driving pressure with blood gas analysis could better select patients eligible for VV ECMO in severe ARDS[J]. Criti Care, 2021, 25 (1): 220.
|
37 |
Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials[J]. Lancet Respir Med, 2014, 2 (8): 611-620.
|
38 |
Goligher EC, Tomlinson G, Hajage D, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc bayesian analysis of a randomized clinical trial[J]. JAMA, 2018, 320 (21): 2251-2259.
|
39 |
Mezidi M, Yonis H, Aublanc M, et al. Effect of end-inspiratory plateau pressure duration on driving pressure[J]. Intensive Care Med, 2017, 43 (4): 587-589.
|
40 |
Sell RE, Malhotra A. Acute respiratory distress syndrome and the promise of driving pressure[J]. Respirology, 2019, 24 (2): 95-96.
|
41 |
Mauri T, Grasselli G, Suriano G, et al. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome[J]. Anesthesiology, 2016, 125 (1): 159-167.
|