切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2023, Vol. 16 ›› Issue (04) : 324 -330. doi: 10.3877/cma.j.issn.1674-6880.2023.04.011

综述

髓源性抑制细胞在人类白血病中的研究进展
董敖, 沈定, 陈伟民, 邬丽娜, 饶月丽()   
  1. 310052 杭州,浙江大学医学院附属儿童医院实验检验中心
    310013 杭州,中国人民解放军第九〇三医院输血科
  • 收稿日期:2023-05-01 出版日期:2023-08-31
  • 通信作者: 饶月丽
  • 基金资助:
    浙江省自然科学基金项目(LY19H190005)
  • Received:2023-05-01 Published:2023-08-31
引用本文:

董敖, 沈定, 陈伟民, 邬丽娜, 饶月丽. 髓源性抑制细胞在人类白血病中的研究进展[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 324-330.

髓源性抑制细胞(myeloid-derived suppressor cells,MDSCs)是一种来源于骨髓造血干细胞且具有异质性的未成熟髓系细胞,在机体的免疫反应中发挥抑制调节作用[1-2]。在健康条件下,骨髓中的祖细胞可以分化为成熟的树突状细胞(dendritic cells,DCs)、粒细胞或巨噬细胞,而在癌症、感染和自身免疫病等病理环境下,祖细胞的分化可以部分地被阻断,导致MDSCs的产生和累积[3-4]。肿瘤与肿瘤微环境(tumor microenvironment,TME)之间复杂的相互作用导致机体处于一种免疫抑制状态,TME中具有免疫抑制功能的MDSCs、调节性T细胞(regulatory T cells,Tregs)和肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs),可以抑制正常的T细胞免疫反应,促进癌细胞的生长和免疫逃逸[5-7]。TME中的MDSCs与肿瘤细胞相互促进,即肿瘤细胞可诱导MDSCs产生和累积,而MDSCs通过抑制免疫反应、促进血管生产和肿瘤生长与转移,在TME内构建一个适合肿瘤生长的微环境[7-9]。大量研究表明,增多的循环和/或浸润性MDSCs与实体肿瘤和血液系统恶性肿瘤患者的不良预后密切相关,减少或清除MDSCs或者改变其抑制功能有助于恢复机体的免疫监视,这使得MDSCs有可能成为克服实体肿瘤免疫抑制微环境的潜在靶点,而靶向MDSCs的策略在血液系统恶性肿瘤的免疫治疗中虽取得了一定进展但仍然具有挑战性[6,9-11]。因此,深入探讨MDSCs的激活、分化和功能机制有助于血液系统恶性肿瘤的免疫治疗。白血病是人类常见的一类异质性造血干细胞和祖细胞的恶性克隆性肿瘤,主要类型包括急性淋巴细胞白血病(acute lymphoblastic leukaemia,ALL)、急性髓系白血病(acute myeloid leukaemia,AML)、慢性淋巴细胞白血病(chronic lymphocytic leukaemia,CLL)和慢性髓系白血病(chronic myeloid leukaemia,CML)[12]。在2020年全球范围内,白血病在所有新癌症中的发病率约为2.5%,病死率约为3.1%,且病死率在血液系统恶性肿瘤中最高[13-14]。研究表明,MDSCs是一类免疫抑制性细胞,其在机体内的累积和活化可释放大量的抑制性分子,在白血病的发生发展及治疗中发挥重要的作用[15-16]。因此,本文就MDSCs在白血病中的作用和功能以及针对MDSCs的靶向治疗进展作一综述,为白血病的防治提供新策略。

1
Gabrilovich DI. Myeloid-derived suppressor cells[J]. Cancer Immunol Res, 2017, 5 (1): 3-8.
2
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21 (8): 485-498.
3
Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function[J]. Trends Immunol, 2011, 32 (1): 19-25.
4
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018, 19 (2): 108-119.
5
Groth C, Hu X, Weber R, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression[J]. Br J Cancer, 2019, 120 (1): 16-25.
6
Zhao Y, Du J, Shen X. Targeting myeloid-derived suppressor cells in tumor immunotherapy: current, future and beyond[J]. Front Immunol, 2023 (14): 1157537.
7
Goswami S, Anandhan S, Raychaudhuri D, et al. Myeloid cell-targeted therapies for solid tumours[J]. Nat Rev Immunol, 2023, 23 (2): 106-120.
8
Wang Y, Johnson KCC, Gatti-Mays ME, et al. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy[J]. J Hematol Oncol, 2022, 15 (1): 118.
9
Li K, Shi H, Zhang B, et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer[J]. Signal Transduct Target Ther, 2021, 6 (1): 362.
10
Dysthe M, Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment[J]. Adv Exp Med Biol, 2020 (1224): 117-140.
11
Wu Y, Yi M, Niu M, et al. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy[J]. Mol Cancer, 2022, 21 (1): 184.
12
Dong Y, Shi O, Zeng Q, et al. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017[J]. Exp Hematol Oncol, 2020 (9): 14.
13
Pulte D, Jansen L, Brenner H. Changes in long term survival after diagnosis with common hematologic malignancies in the early 21st century[J]. Blood Cancer J, 2020, 10 (5): 56.
14
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71 (3): 209-249.
15
Wang S, Zhao X, Wu S, et al. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies[J]. Biomark Res, 2023, 11 (1): 34.
16
Lv M, Wang K, Huang XJ. Myeloid-derived suppressor cells in hematological malignancies: friends or foes[J]. J Hematol Oncol, 2019, 12 (1): 105.
17
Mandruzzato S, Brandau S, Britten CM, et al. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study[J]. Cancer Immunol Immunother, 2016, 65 (2): 161-169.
18
Lang S, Bruderek K, Kaspar C, et al. Clinical relevance and suppressive capacity of human myeloid-derived suppressor cell subsets[J]. Clin Cancer Res, 2018, 24 (19): 4834-4844.
19
Cassetta L, Bruderek K, Skrzeczynska-Moncznik J, et al. Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation[J]. J Immunother Cancer, 2020, 8 (2): e001223.
20
Yu S, Ren X, Li L. Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin[J]. Exp Hematol Oncol, 2022, 11 (1): 43.
21
Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards[J]. Nat Commun, 2016 (7): 12150.
22
Karin N. The development and homing of myeloid-derived suppressor cells: from a two-stage model to a multistep narrative[J]. Front Immunol, 2020 (11): 557586.
23
Liang L, Xu X, Li J, et al. Interaction between microRNAs and myeloid-derived suppressor cells in tumor microenvironment[J]. Front Immunol, 2022 (13): 883683.
24
Qiu W, Guo X, Li B, et al. Exosomal miR-1246 from glioma patient body fluids drives the differentiation and activation of myeloid-derived suppressor cells[J]. Mol Ther, 2021, 29 (12): 3449-3464.
25
Li X, Li Y, Yu Q, et al. Metabolic reprogramming of myeloid-derived suppressor cells: an innovative approach confronting challenges[J]. J Leukoc Biol, 2021, 110 (2): 257-270.
26
Grover A, Sanseviero E, Timosenko E, et al. Myeloid-derived suppressor cells: a propitious road to clinic[J]. Cancer Discov, 2021, 11 (11): 2693-2706.
27
Gunes EG, Rosen ST, Querfeld C. The role of myeloid-derived suppressor cells in hematologic malignancies[J]. Curr Opin Oncol, 2020, 32 (5): 518-526.
28
Fan R, De Beule N, Maes A, et al. The prognostic value and therapeutic targeting of myeloid-derived suppressor cells in hematological cancers[J]. Front Immunol, 2022 (13): 1016059.
29
Liu YF, Chen YY, He YY, et al. Expansion and activation of granulocytic, myeloid-derived suppressor cells in childhood precursor B cell acute lymphoblastic leukemia[J]. J Leukoc Biol, 2017, 102 (2): 449-458.
30
Zahran AM, Shibl A, Rayan A, et al. Increase in polymorphonuclear myeloid-derived suppressor cells and regulatory T-cells in children with B-cell acute lymphoblastic leukemia[J]. Sci Rep, 2021, 11 (1): 15039.
31
Salem ML, El-Shanshory MR, Abdou SH, et al. Chemotherapy alters the increased numbers of myeloid-derived suppressor and regulatory T cells in children with acute lymphoblastic leukemia[J]. Immunopharmacol Immunotoxicol, 2018, 40 (2): 158-167.
32
Labib Salem M, Zidan AA, Ezz El-Din El-Naggar R, et al. Myeloid-derived suppressor cells and regulatory T cells share common immunoregulatory pathways-related microRNAs that are dysregulated by acute lymphoblastic leukemia and chemotherapy[J]. Hum Immunol, 2021, 82 (1): 36-45.
33
Del Gaizo M, Sergio I, Lazzari S, et al. MicroRNAs as modulators of the immune response in T-cell acute lymphoblastic leukemia[J]. Int J Mol Sci, 2022, 23 (2): 829.
34
Grazioli P, Orlando A, Giordano N, et al. Notch-signaling deregulation induces myeloid-derived suppressor cells in T-cell acute lymphoblastic leukemia[J]. Front Immunol, 2022 (13): 809261.
35
Li C, You X, Xu X, et al. A metabolic reprogramming amino acid polymer as an immunosurveillance activator and leukemia targeting drug carrier for T-cell acute lymphoblastic leukemia[J]. Adv Sci (Weinh), 2022, 9 (9): e2104134.
36
Liu J, Zhou Y, Huang Q, et al. CD14+HLA-DRlow/- expression: a novel prognostic factor in chronic lymphocytic leukemia[J]. Oncol Lett, 2015, 9 (3): 1167-1172.
37
Zahran AM, Moeen SM, Thabet AF, et al. Monocytic myeloid-derived suppressor cells in chronic lymphocytic leukemia patients: a single center experience[J]. Leuk Lymphoma, 2020, 61 (7): 1645-1652.
38
Kowalska W, Bojarska-Junak A. Monocytic MDSC as a source of immunosuppressive cytokines in chronic lymphocytic leukemia (CLL) microenvironment[J]. Folia Histochem Cytobiol, 2020, 58 (1): 25-36.
39
Ferrer G, Jung B, Chiu PY, et al. Myeloid-derived suppressor cell subtypes differentially influence T-cell function, T-helper subset differentiation, and clinical course in CLL[J]. Leukemia, 2021, 35 (11): 3163-3175.
40
Zarobkiewicz M, Kowalska W, Chocholska S, et al. High M-MDSC percentage as a negative prognostic factor in chronic lymphocytic leukaemia[J]. Cancers (Basel), 2020, 12 (9): 2614.
41
Giallongo C, Parrinello N, Tibullo D, et al. Myeloid derived suppressor cells (MDSCs) are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs) in chronic myeloid leukemia patients[J]. PLoS One, 2014, 9 (7): e101848.
42
Christiansson L, Soderlund S, Svensson E, et al. Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia[J]. PLoS One, 2013, 8 (1): e55818.
43
Giallongo C, Romano A, Parrinello NL, et al. Mesenchymal stem cells (MSC) regulate activation of granulocyte-like myeloid derived suppressor cells (G-MDSC) in chronic myeloid leukemia patients[J]. PLoS One, 2016, 11 (7): e0158392.
44
Xu H, Liu J, Shen N, et al. The interaction of tumor cells and myeloid-derived suppressor cells in chronic myelogenous leukemia[J]. Leuk Lymphoma, 2020, 61 (1): 128-137.
45
Pyzer AR, Stroopinsky D, Rajabi H, et al. MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia[J]. Blood, 2017, 129 (13): 1791-1801.
46
Tohumeken S, Baur R, Bottcher M, et al. Palmitoylated proteins on AML-derived extracellular vesicles promote myeloid-derived suppressor cell differentiation via TLR2/Akt/mTOR signaling[J]. Cancer Res, 2020, 80 (17): 3663-3676.
47
Wang L, Jia B, Claxton DF, et al. VISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients with AML[J]. Oncoimmunology, 2018, 7 (9): e1469594.
48
Zhang J, Peng Y, He Y, et al. GPX1-associated prognostic signature predicts poor survival in patients with acute myeloid leukemia and involves in immunosuppression[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868 (1): 166268.
49
Mo J, Deng L, Peng K, et al. Targeting STAT3-VISTA axis to suppress tumor aggression and burden in acute myeloid leukemia[J]. J Hematol Oncol, 2023, 16 (1): 15.
50
Wang H, Tao Q, Wang Z, et al. Circulating monocytic myeloid-derived suppressor cells are elevated and associated with poor prognosis in acute myeloid leukemia[J]. J Immunol Res, 2020 (2020): 7363084.
51
Hyun SY, Na EJ, Jang JE, et al. Immunosuppressive role of CD11b+CD33+HLA-DR- myeloid-derived suppressor cells-like blast subpopulation in acute myeloid leukemia[J]. Cancer Med, 2020, 9 (19): 7007-7017.
52
Jitschin R, Saul D, Braun M, et al. CD33/CD3-bispecific T-cell engaging (BiTER) antibody construct targets monocytic AML myeloid-derived suppressor cells[J]. J Immunother Cancer, 2018, 6 (1): 116.
53
Trabanelli S, Chevalier MF, Martinez-Usatorre A, et al. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis[J]. Nat Commun, 2017, 8 (1): 593.
54
Hao Z, Li R, Wang Y, et al. Landscape of myeloid-derived suppressor cell in tumor immunotherapy[J]. Biomark Res, 2021, 9 (1): 77.
55
Hong Y, Wen R, Wu G, et al. Abnormal immune function of MDSC and NK cells from chronic phase CML patients restores with tyrosine kinase inhibitors[J]. Int Immunopharmacol, 2022 (109): 108821.
56
Giallongo C, Parrinello NL, La Cava P, et al. Monocytic myeloid-derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib[J]. J Cell Mol Med, 2018, 22 (2): 1070-1080.
57
Cheng P, Chen X, Dalton R, et al. Immunodepletion of MDSC by AMV564, a novel bivalent, bispecific CD33/CD3 T cell engager, ex vivo in MDS and melanoma[J]. Mol Ther, 2022, 30 (6): 2315-2326.
58
Christiansson L, Soderlund S, Mangsbo S, et al. The tyrosine kinase inhibitors imatinib and dasatinib reduce myeloid suppressor cells and release effector lymphocyte responses[J]. Mol Cancer Ther, 2015, 14 (5): 1181-1891.
59
Hughes A, Clarson J, Tang C, et al. CML patients with deep molecular responses to TKI have restored immune effectors and decreased PD-1 and immune suppressors[J]. Blood, 2017, 129 (9): 1166-1176.
60
Demosthenous C, Sakellari I, Douka V, et al. The role of myeloid-derived suppressor cells (MDSCs) in graft-versus-host disease (GVHD)[J]. J Clin Med, 2021, 10 (10): 2050.
61
Garcia-Rosa M, Abraham A, Bertaina A, et al. International Society for Cell & Gene Therapy Stem Cell Engineering Committee: cellular therapies for the treatment of graft-versus-host-disease after hematopoietic stem cell transplant[J]. Cytotherapy, 2023, 25 (6): 578-589.
62
Yin J, Li L, Wang C, et al. Increased Galectin-9 expression, a prognostic biomarker of aGVHD, regulates the immune response through the Galectin-9 induced MDSC pathway after allogeneic hematopoietic stem cell transplantation[J]. Int Immunopharmacol, 2020 (88): 106929.
No related articles found!
阅读次数
全文


摘要