切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2023, Vol. 16 ›› Issue (03) : 177 -186. doi: 10.3877/cma.j.issn.1674-6880.2023.03.001

论著

非外伤性院外心脏骤停患者预后危险因素分析及列线图模型的构建
楼亨通, 陆远强()   
  1. 310003 杭州,浙江大学医学院附属第一医院急诊科 浙江省增龄与理化损伤性疾病诊治研究重点实验室;现工作单位为浙江大学医学院附属第四医院急诊医学科
    310003 杭州,浙江大学医学院附属第一医院急诊科 浙江省增龄与理化损伤性疾病诊治研究重点实验室
  • 收稿日期:2022-12-12 出版日期:2023-06-30
  • 通信作者: 陆远强
  • 基金资助:
    浙江省重点研发计划项目(2019C03076)

Risk factors of prognosis in patients with non-traumatic out-of-hospital cardiac arrest and development of a nomogram prediction model

Hengtong Lou, Yuanqiang Lu()   

  1. Department of Emergency Medicine, Zhejiang Key Laboratory for the Diagnosis and Treatment of Aging and Physicochemical Injury Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  • Received:2022-12-12 Published:2023-06-30
  • Corresponding author: Yuanqiang Lu
引用本文:

楼亨通, 陆远强. 非外伤性院外心脏骤停患者预后危险因素分析及列线图模型的构建[J/OL]. 中华危重症医学杂志(电子版), 2023, 16(03): 177-186.

Hengtong Lou, Yuanqiang Lu. Risk factors of prognosis in patients with non-traumatic out-of-hospital cardiac arrest and development of a nomogram prediction model[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2023, 16(03): 177-186.

目的

探讨影响成人非外伤性院外心脏骤停(OHCA)患者自主循环恢复(ROSC)后28 d死亡的危险因素,并构建列线图模型。

方法

纳入浙江大学医学院附属第四医院自2015年10月22日至2022年6月30日急诊抢救室收治的134例非外伤性OHCA且ROSC患者,并根据ROSC后28 d内死亡情况分为存活组(45例)及死亡组(89例)。收集两组患者临床资料,进行单因素分析。通过最佳子集回归分析最小贝叶斯信息准则(BIC)值来筛选自变量。使用多因素logistic回归分析来确定影响患者ROSC后28 d死亡的独立危险因素,并构建列线图预测模型。通过受试者工作特征(ROC)曲线、校正曲线以及决策曲线分析对模型进行评价,并与急性病生理学和长期健康评价(APACHE)Ⅱ评分的曲线下面积(AUC)进行比较。

结果

多因素logistic回归分析发现,血钾[比值比(OR)= 1.454,95%置信区间(CI)(1.007,2.098),P = 0.046]、肌酸激酶同工酶(CK-MB)[OR = 1.024,95%CI(1.008,1.041),P = 0.004]、尿酸[OR = 1.005,95%CI(1.001,1.010),P = 0.013]、肾上腺素使用量[OR = 1.282,95%CI(1.080,1.522),P = 0.004]均为影响非外伤性OHCA患者ROSC后28 d死亡的独立危险因素,可电击心律为其保护因素[OR = 0.054,95%CI(0.014,0.211),P < 0.001]。结合以上变量构建列线图模型,该模型的AUC为0.872,95%CI(0.812,0.932),P < 0.001。校正曲线显示其预测概率和实际概率基本一致,决策曲线分析显示其具有良好的临床净获益。APACHEⅡ评分的AUC及95%CI为0.773(0.688,0.858),P < 0.001,列线图模型的AUC明显优于APACHEⅡ评分(Z = 1.994,P = 0.046)。

结论

可电击心律、肾上腺素用量、入急诊室后的首次血钾、血尿酸、CK-MB为影响非外伤性OHCA患者ROSC后28 d死亡的独立影响因素。基于以上因素构建的列线图预测模型临床实用价值较高。

Objective

To analyze risk factors for death at 28 days after return of spontaneous circulation (ROSC) in adult non-traumatic out-of-hospital cardiac arrest (OHCA) patients and to develop a nomogram model.

Methods

A total of 134 patients with non-traumatic OHCA and ROSC admitted to the emergency rescue room at the Fourth Affiliated Hospital, Zhejiang University School of Medicine from October 22, 2015 to June 30, 2022 were included. According to their death status within 28 days after ROSC, all patients were divided into a survival group (45 cases) and a death group (89 cases). Clinical data of the two groups were collected and univariate analysis was performed. Independent variables were screened by optimal subset regression analysis with minimum Bayesian information criterion (BIC) values. Multivariate logistic regression analysis was used to identify independent risk factors for death at 28 days after ROSC, and a nomogram prediction model was constructed. The receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis were used to evaluate the nomogram model. Finally, the area under the curve (AUC) of acute physiology and chronic health evaluation (APACHE) Ⅱ score and the nomogram model was compared.

Results

Multivariate logistic regression showed that blood potassium [odds ratio (OR) = 1.454, 95% confidence interval (CI) (1.007, 2.098), P = 0.046], creatine kinase isoenzyme MB (CK-MB) [OR = 1.024, 95%CI (1.008, 1.041), P = 0.004], uric acid [OR = 1.005, 95%CI (1.001, 1.010), P = 0.013] and adrenaline dosage [OR = 1.282, 95%CI (1.080, 1.522), P = 0.004] were independent risk factors for death at 28 days after ROSC in non-traumatic OHCA patients, and the shockable rhythm was a protective factor [OR = 0.054, 95%CI (0.014, 0.211), P < 0.001]. Based on the above risk factors, a nomogram was constructed for predicting mortality risk of OHCA patients. The AUC of the nomogram was 0.872 [95%CI (0.812, 0.932), P < 0.001]. The calibration curve showed that the predicted and actual probabilities were consistent, and the decision curve analysis showed that the nomogram had a good clinical benefit. In addition, the AUC and 95%CI of APACHEⅡ score was 0.773 (0.688, 0.858), with P < 0.001, and the AUC of the nomogram model was significantly better than that of the APACHEⅡ score (Z = 1.994, P = 0.046).

Conclusions

The shockable rhythm, the dosage of adrenaline, and the first blood potassium, blood uric acid and CK-MB after admission to the emergency department are independent influencing factors for 28-day mortality in non-traumatic OHCA patients after ROSC. The prediction model based on the above factors has a good clinical practical value.

表1 两组非外伤性OHCA且ROSC成功患者间人口统计学资料的比较[MP25P75)]
表2 两组非外伤性OHCA且ROSC成功患者间院前资料的比较[MP25P75)]
表3 两组非外伤性OHCA且ROSC成功患者间CPR相关资料的比较[MP25P75)]
表4 两组非外伤性OHCA且ROSC成功患者间实验室指标的比较[MP25P75)]
组别 例数 WBC(×109/L) N(×109/L) L(×109/L) M(×109/L) HB(g/L) RDW(%) PLT(×109/L, ± s PT(s) APTT(s) FIB(g/L) DD(mg/L) 血钾(mmol/L)
存活组 45 12(10,16) 6(4,11) 5.0(2.1,6.5) 0.8(0.5,1.0) 139(123,149) 13(13,15) 218±66 12(11,14) 30(27,35) 2.9(2.3,3.7) 4.2(2.0,11.3) 4(4,5)
死亡组 89 12(9,17) 6(4,8) 4.7(2.6,6.7) 0.6(0.4,1.0) 129(105,147) 14(13,17) 186±88 15(13,18) 36(29,50) 2.4(1.7,3.2) 9.8(4.1,28.2) 5(4,6)
Z/t   0.087 0.653 0.164 0.177 2.345 5.409 4.739 18.526 9.890 6.014 12.253 18.340
P   0.768 0.419 0.685 0.674 0.126 0.020 0.031 < 0.001 0.002 0.014 < 0.001 < 0.001
组别 例数 血钠(mmol/L, ± s 血氯(mmol/L) 血钙(mmol/L, ± s 总蛋白(g/L, ± s 白蛋白(g/L, ± s 球蛋白(g/L) CHE(KU/L, ± s TBIL(μmol/L) DBIL(μmol/L) IBIL(μmol/L) ALT(U/L)
存活组 45 139 ± 5 103(101,106) 2.22 ± 0.14 68 ± 8 38 ± 6 30(26,34) 6.9 ± 2.0 9(6,13) 3.0(1.8,4.3) 6(4,9) 28(18,54)
死亡组 89 138 ± 8 102(99,107) 2.25 ± 0.24 63 ± 10 34 ± 6 28(24,31) 5.7 ± 2.5 10(6,13) 3.3(1.9,6.2) 6(4,8) 50(27,165)
Z/t   0.225 2.566 0.620 7.335 7.408 3.248 8.043 0.240 1.450 0.005 8.909
P   0.636 0.109 0.432 0.008 0.007 0.072 0.005 0.624 0.229 0.942 0.003
组别 例数 AST(U/L) BUN(mmol/L) 肌酐(μmol/L) 尿酸(μmol/L) CRP(mg/L) LDH(U/L) 肌酸激酶(U/L) CK-MB(U/L) TNT(μg/L) NT-proBNP(μg/L) pH值( ± s 碱剩余( ± s
存活组 45 45(33,87) 6(5,8) 102(85,120) 403(333,459) 2.6(1.0,23.2) 335(266,451) 135(89,189) 39(28,54) 0.0(0.0,0.1) 1 185(187,2 178) 6.99 ± 0.15 -16 ± 6
死亡组 89 87(46,210) 7(6,11) 112(90,147) 465(361,559) 5.7(1.2,30.4) 377(306,610) 139(84,212) 50(36,70) 0.1(0.0,0.1) 2 087(447,4 692) 6.89 ± 0.15 -20 ± 8
Z/t   8.409 5.796 3.605 8.368 0.844 4.748 0.003 7.135 0.153 3.447 15.250 7.930
P   0.004 0.016 0.058 0.004 0.358 0.029 0.955 0.008 0.696 0.063 < 0.001 0.006
图1 非外伤性OHCA患者ROSC成功后28 d死亡风险的列线图注:OHCA.院外心脏骤停;ROSC.自主循环恢复;CK-MB.肌酸激酶同工酶
表5 影响非外伤性OHCA患者ROSC成功后28 d死亡的多因素logistic回归分析
图2 非外伤性OHCA患者ROSC成功后28 d死亡风险预测模型的校准曲线(a)、决策曲线(b)及其与APACHEⅡ评分的ROC曲线比较(c)注:OHCA.院外心脏骤停;ROSC.自主循环恢复;APACHE.性病生理学和长期健康评价;ROC.受试者工作特征
1
Berdowski J, Berg RA, Tijssen JG, et al. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies[J]. Resuscitation, 2010, 81 (11): 1479-1487.
2
Grasner JT, Herlitz J, Koster RW, et al. Quality management in resuscitation—towards a European cardiac arrest registry (EuReCa) [J]. Resuscitation, 2011, 82 (8): 989-994.
3
Rea TD, Eisenberg MS, Sinibaldi G, et al. Incidence of EMS-treated out-of-hospital cardiac arrest in the United States[J]. Resuscitation, 2004, 63 (1): 17-24.
4
Xu F, Zhang Y, Chen Y. Cardiopulmonary resuscitation training in China: current situation and future development[J]. JAMA Cardiol, 2017, 2 (5): 469-470.
5
Kragholm K, Wissenberg M, Mortensen RN, et al. Bystander efforts and 1-year outcomes in out-of-hospital cardiac arrest[J]. N Engl J Med, 2017, 376 (18): 1737-1747.
6
Leong BS. Bystander CPR and survival[J]. Singapore Med J, 2011, 52 (8): 573-575.
7
Hüpfl M, Selig HF, Nagele P. Chest-compression-only versus standard cardiopulmonary resuscitation: a meta-analysis[J]. Lancet, 2010, 376 (9752): 1552-1557.
8
Shao F, Li CS, Liang LR, et al. Outcome of out-of-hospital cardiac arrests in Beijing, China[J]. Resuscitation, 2014, 85 (11): 1411-1417.
9
Mongardon N, Dumas F, Ricome S, et al. Postcardiac arrest syndrome: from immediate resuscitation to long-term outcome[J]. Ann Intensive Care, 2011, 1 (1): 45.
10
Adrie C, Cariou A, Mourvillier B, et al. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the OHCA score[J]. Eur Heart J, 2006, 27 (23): 2840-2845.
11
Maupain C, Bougouin W, Lamhaut L, et al. The CAHP (cardiac arrest hospital prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest[J]. Eur Heart J, 2016, 37 (42): 3222-3228.
12
Perkins GD, Handley AJ, Koster RW, et al. European resuscitation council guidelines for resuscitation 2015: section 2. Adult basic life support and automated external defibrillation[J]. Resuscitation, 2015 (95): 81-99.
13
国家卫生计生委办公厅.国家卫生计生委办公厅关于印发麻醉等6个专业质控指标(2015年版)的通知[EB/OL].(2015-04-10)[2022-10-12].

URL    
14
严湘红,马超超,禹松林,等.动脉血和静脉血常用生化检测项目的比较分析[J].中华检验医学杂志201841(10):759-764.
15
Zhang JB, Lin J, Zhao XD. Analysis of bias in measurements of potassium, sodium and hemoglobin by an emergency department-based blood gas analyzer relative to hospital laboratory autoanalyzer results[J]. PLoS One, 2015, 10 (4): e0122383.
16
Nanda SK, Ray L, Dinakaran A. Agreement of arterial sodium and arterial potassium levels with venous sodium and venous potassium in patients admitted to intensive care unit[J]. J Clin Diagn Res, 2015, 9 (2): BC28-BC30.
17
Kelly AM. Review article: can venous blood gas analysis replace arterial in emergency medical care[J]. Emerg Med Australas, 2010, 22 (6): 493-498.
18
Zeserson E, Goodgame B, Hess JD, et al. Correlation of venous blood gas and pulse oximetry with arterial blood gas in the undifferentiated critically ill patient[J]. J Intensive Care Med, 2018, 33 (3): 176-181.
19
Kim J, Kim K, Lee JH, et al. Red blood cell distribution width as an independent predictor of all-cause mortality in out of hospital cardiac arrest[J]. Resuscitation, 2012, 83 (10): 1248-1252.
20
Shinozaki K, Oda S, Sadahiro T, et al. Blood ammonia and lactate levels on hospital arrival as a predictive biomarker in patients with out-of-hospital cardiac arrest[J]. Resuscitation, 2011, 82 (4): 404-409.
21
Lissner Ostlund E, Levin H, Nielsen N, et al. Neuron-specific enolase and long-term neurological outcome after OHCA—a validation study[J]. Resuscitation, 2021 (168): 206-213.
22
Geddes LA, Roeder RA, Rundell AE, et al. The natural biochemical changes during ventricular fibrillation with cardiopulmonary resuscitation and the onset of postdefibrillation pulseless electrical activity[J]. Am J Emerg Med, 2006, 24 (5): 577-581.
23
Patil KD, Halperin HR, Becker LB. Cardiac arrest: resuscitation and reperfusion[J]. Circ Res, 2015, 116 (12): 2041-2049.
24
Campos FO, Prassl AJ, Seemann G, et al. Influence of ischemic core muscle fibers on surface depolarization potentials in superfused cardiac tissue preparations: a simulation study[J]. Med Biol Eng Comput, 2012, 50 (5): 461-472.
25
Pham AQ, Sexton J, Wimer D, et al. Managing hyperkalemia: stepping into a new frontier[J]. J Pharm Pract, 2017, 30 (5): 557-561.
26
Shida H, Matsuyama T, Iwami T, et al. Serum potassium level on hospital arrival and survival after out-of-hospital cardiac arrest: the CRITICAL study in Osaka, Japan[J]. Eur Heart J Acute Cardiovasc Care, 2020, 9 (4_suppl): S175-S183.
27
Shin J, Lim YS, Kim K, et al. Initial blood pH during cardiopulmonary resuscitation in out-of-hospital cardiac arrest patients: a multicenter observational registry-based study[J]. Crit Care, 2017, 21 (1): 322.
28
Müllner M, Sterz F, Binder M, et al. Creatine kinase and creatine kinase-MB release after nontraumatic cardiac arrest[J]. Am J Cardiol, 1996, 77 (8): 581-585.
29
Kern KB, Hilwig R, Ewy GA. Retrograde coronary blood flow during cardiopulmonary resuscitation in swine: intracoronary Doppler evaluation[J]. Am Heart J, 1994, 128 (3): 490-499.
30
Müllner M, Oschatz E, Sterz F, et al. The influence of chest compressions and external defibrillation on the release of creatine kinase-MB and cardiac troponin T in patients resuscitated from out-of-hospital cardiac arrest[J]. Resuscitation, 1998, 38 (2): 99-105.
31
Merchant RM, Topjian AA, Panchal AR, et al. Part 1: executive summary: 2020 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2020, 142 (16_suppl_2): S337-S357.
32
Overgaard CB, Dzavík V. Inotropes and vasopressors: review of physiology and clinical use in cardiovascular disease[J]. Circulation, 2008, 118 (10): 1047-1056.
33
Paradis NA, Martin GB, Rosenberg J, et al. The effect of standard- and high-dose epinephrine on coronary perfusion pressure during prolonged cardiopulmonary resuscitation[J]. JAMA, 1991, 265 (9): 1139-1144.
34
Callaway CW. Questioning the use of epinephrine to treat cardiac arrest[J]. JAMA, 2012, 307 (11): 1198-1200.
35
Andersen LW, Kurth T, Chase M, et al. Early administration of epinephrine (adrenaline) in patients with cardiac arrest with initial shockable rhythm in hospital: propensity score matched analysis[J]. BMJ, 2016 (353): i1577.
36
Nolan JP, Perkins GD. Is there a role for adrenaline during cardiopulmonary resuscitation?[J]. Curr Opin Crit Care, 2013, 19 (3): 169-174.
37
Sun S, Tang W, Song F, et al. The effects of epinephrine on outcomes of normothermic and therapeutic hypothermic cardiopulmonary resuscitation[J]. Crit Care Med, 2010, 38 (11): 2175-2180.
38
Hagihara A, Hasegawa M, Abe T, et al. Prehospital epinephrine use and survival among patients with out-of-hospital cardiac arrest[J]. JAMA, 2012, 307 (11): 1161-1168.
39
Dumas F, Bougouin W, Geri G, et al. Is epinephrine during cardiac arrest associated with worse outcomes in resuscitated patients?[J]. J Am Coll Cardiol, 2014, 64 (22): 2360-2367.
40
Link MS, Berkow LC, Kudenchuk PJ, et al. Part 7: adult advanced cardiovascular life support: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2015, 132 (18 Suppl 2): S444-S464.
41
Kang DH, Chen W. Uric acid and chronic kidney disease: new understanding of an old problem[J]. Semin Nephrol, 2011, 31 (5): 447-452.
42
Wang H, Zhang H, Sun L, et al. Roles of hyperuricemia in metabolic syndrome and cardiac-kidney-vascular system diseases[J]. Am J Transl Res, 2018, 10 (9): 2749-2763.
43
Mallat SG, Al Kattar S, Tanios BY, et al. Hyperuricemia, hypertension, and chronic kidney disease: an emerging association[J]. Curr Hypertens Rep, 2016, 18(10): 74.
44
Strasak A, Ruttmann E, Brant L, et al. Serum uric acid and risk of cardiovascular mortality: a prospective long-term study of 83,683 Austrian men[J]. Clin Chem, 2008, 54 (2): 273-284.
45
Pacifico L, Cantisani V, Anania C, et al. Serum uric acid and its association with metabolic syndrome and carotid atherosclerosis in obese children[J]. Eur J Endocrinol, 2009, 160 (1): 45-52.
46
Lee JE, Kim YG, Choi YH, et al. Serum uric acid is associated with microalbuminuria in prehypertension[J]. Hypertension, 2006, 47 (5): 962-967.
47
Sasson C, Rogers MA, Dahl J, et al. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis[J]. Circ Cardiovasc Qual Outcomes, 2010, 3 (1): 63-81.
48
Lee HY, Lee BK, Lee DH, et al. Turn-to-shockable rhythm has comparable neurologic outcomes to initial shockable rhythm in out-of-hospital cardiac arrest patients who underwent targeted temperature management[J]. Ther Hypothermia Temp Manag, 2020, 10 (4): 220-228.
49
Luo S, Zhang Y, Zhang W, et al. Prognostic significance of spontaneous shockable rhythm conversion in adult out-of-hospital cardiac arrest patients with initial non-shockable heart rhythms: a systematic review and meta-analysis[J]. Resuscitation, 2017 (121): 1-8.
50
Hallstrom A, Rea TD, Mosesso VN Jr, et al. The relationship between shocks and survival in out-of-hospital cardiac arrest patients initially found in PEA or asystole[J]. Resuscitation, 2007, 74 (3): 418-426.
[1] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[2] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[3] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[4] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[5] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[6] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[7] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[8] 关小玲, 周文营, 陈洪平. PTAAR在乙肝相关慢加急性肝衰竭患者短期预后中的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 841-845.
[9] 张润锦, 阳盼, 林燕斯, 刘尊龙, 刘建平, 金小岩. EB病毒相关胆管癌伴多发转移一例及国内文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 865-869.
[10] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[11] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[12] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[13] 唐成鑫, 亢文超, 孙玉芳, 项涛, 马林. 成都市院前急救中心院外心脏骤停的调度流程及改进措施分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 745-750.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
阅读次数
全文


摘要