切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2023, Vol. 16 ›› Issue (01) : 20 -27. doi: 10.3877/cma.j.issn.1674-6880.2023.01.004

论著

宏基因组二代测序技术在社区获得性肺炎患者病原学检测中的应用
刘艳波1, 陆远强2,()   
  1. 1. 310003 杭州,浙江大学医学院附属第一医院急诊科 浙江省增龄与理化损伤性疾病诊治研究重点实验室(现工作单位为浙江大学医学院附属邵逸夫医院急诊科)
    2. 310003 杭州,浙江大学医学院附属第一医院急诊科 浙江省增龄与理化损伤性疾病诊治研究重点实验室
  • 收稿日期:2022-09-21 出版日期:2023-02-28
  • 通信作者: 陆远强
  • 基金资助:
    浙江省重点研发计划项目(2019C03076)

Application of metagenomic next-generation sequencing technology in the pathogenic detection of community-acquired pneumonia

Yanbo Liu1, Yuanqiang Lu2,()   

  1. 1. Department of Emergency, Zhejiang Provincial Key Laboratory of Diagnosis and Treatment of Aging and Physical-chemical Injury Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  • Received:2022-09-21 Published:2023-02-28
  • Corresponding author: Yuanqiang Lu
引用本文:

刘艳波, 陆远强. 宏基因组二代测序技术在社区获得性肺炎患者病原学检测中的应用[J/OL]. 中华危重症医学杂志(电子版), 2023, 16(01): 20-27.

Yanbo Liu, Yuanqiang Lu. Application of metagenomic next-generation sequencing technology in the pathogenic detection of community-acquired pneumonia[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2023, 16(01): 20-27.

目的

评价宏基因组二代测序(mNGS)技术在社区获得性肺炎(CAP)病原体检测中的应用价值。

方法

回顾性分析2021年2月至8月于浙江大学医学院附属第一医院临床诊断为CAP并行mNGS检测及实验室常规方法检查的345例住院患者的临床资料。记录每位患者的人口学特征、mNGS检测与实验室常规方法检查的结果、抗感染方案和调整方案前后C反应蛋白(CRP)及降钙素原(PCT)水平。

结果

实验室常规方法检测为阳性的患者有173例,发现33种微生物;mNGS检测为阳性患者共315例,发现130种微生物。mNGS检测阳性率较实验室常规方法显著提高[91.30%(315/345)vs. 50.14%(173/345),χ2 = 129.097,P < 0.001],一致性检验Kappa = 0.105,P = 0.001。且在抗生素暴露的294例患者中,mNGS阳性率显著高于实验室常规方法[90.48%(266/294)vs. 49.32%(145/294),χ2 = 109.924,P < 0.001]。同时,mNGS与实验室常规方法确诊率的比较,差异具有统计学意义[85.22%(294/345)vs. 39.13%(135/345),χ2 = 141.040,P < 0.001]。与入院时比较,调整抗感染方案后3 d,基于mNGS检测结果作为病原学诊断依据的患者CRP[68(24,118)mg/L vs. 12(5,46)mg/L,Z = 6.154,P < 0.001]及PCT[0.53(0.20,0.93)μg/L vs. 0.25(0.08,0.54)μg/L,Z = 2.572,P = 0.010]水平均显著降低。

结论

在CAP患者病原学的检测中,mNGS技术具有既往抗生素暴露的影响少、检测病原体广泛等优点,可以作为一种可行的补充手段。

Objective

To evaluate the clinical application value of metagenomic next-generation sequencing (mNGS) technology in the diagnosis of community-acquired pneumonia (CAP) pathogens.

Methods

A total of 345 inpatients who were clinically diagnosed with CAP and examined by mNGS and laboratory routine methods in the First Affiliated Hospital, Zhejiang University School of Medicine from February to August 2021 were retrospectively analyzed, and their clinical data were collected. The demographic characteristics, the results of mNGS and laboratory routine tests, the anti-infection regimen, and the levels of C-reactive protein (CRP) and procalcitonin (PCT) before and after regimen adjustment were recorded.

Results

There were 173 positive patients tested by laboratory routine methods with 33 microorganisms, and 315 positive patients by mNGS with 130 microorganisms. The positive rate of mNGS was much higher than that of laboratory routine methods [91.30% (315/345) vs. 50.14% (173/345), χ2 = 129.097, P < 0.001], with the consistency test Kappa = 0.105, P = 0.001. The positive rate of mNGS in the 294 patients exposed to antibiotics was also significantly higher than that of laboratory routine methods [90.48% (266/294) vs. 49.32% (145/294), χ2 = 109.924, P < 0.001]. Meanwhile, there was a statistically significant difference in the diagnosis rate between mNGS and laboratory routine methods [85.22% (294/345) vs. 39.13% (135/345), χ2 = 141.040, P < 0.001]. Compared with at admission, the levels of CRP [68 (24, 118) mg/L vs. 12 (5, 46) mg/L, Z = 6.154, P < 0.001] and PCT [0.53 (0.20, 0.93) μg/L vs. 0.25 (0.08, 0.54) μg/L, Z = 2.572, P = 0.010] in the patients with mNGS results as the basis for etiological diagnosis decreased markedly on the third day after adjusting the anti-infection regimen.

Conclusion

In the etiological detection of CAP patients, the mNGS technology has the advantages of less impact of previous antibiotic exposure and broader detection of pathogens, which can be a feasible supplementary means.

表1 mNGS与实验室常规方法对CAP患者检测结果的比较(例)
表2 7例CAP患者耐药基因与药物敏感试验结果
1
GBD 2015 LRI Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet Infect Dis, 2017, 17 (11): 1133-1161.
2
Cilloniz C, Martin-Loeches I, Garcia-Vidal C, et al. Microbial etiology of pneumonia: epidemiology, diagnosis and resistance patterns[J]. Int J Mol Sci, 2016, 17 (12): 2120.
3
Miller JM, Binnicker MJ, Campbell S, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology[J]. Clin Infect Dis, 2018, 67 (6): e1-e94.
4
Haslam DB. Future applications of metagenomic next-generation sequencing for infectious diseases diagnostics[J]. J Pediatric Infect Dis Soc, 2021, 10 (Supplement_4): S112-S117.
5
Zhu YG, Tang XD, Lu YT, et al. Contemporary situation of community-acquired pneumonia in china: a systematic review[J]. J Transl Int Med, 2018, 6 (1): 26-31.
6
《中华传染病杂志》编辑委员会.中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J].中华传染病杂志202038(11):681-689.
7
Ambardar S, Gupta R, Trakroo D, et al. High throughput sequencing: an overview of sequencing chemistry[J]. Indian J Microbiol, 2016, 56 (4): 394-404.
8
Duan H, Li X, Mei A, et al. The diagnostic value of metagenomic next-generation sequencing in infectious diseases[J]. BMC Infect Dis, 2021, 21 (1): 62.
9
Zhang D, Yang X, Wang J, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in patients with lower respiratory tract infections[J]. J Int Med Res, 2022, 50 (4): 3000605221089795.
10
Sun T, Wu X, Cai Y, et al. Metagenomic next-generation sequencing for pathogenic diagnosis and antibiotic management of severe community-acquired pneumonia in immunocompromised adults[J]. Front Cell Infect Microbiol, 2021 (11): 661589.
11
中华医学会呼吸病学分会.中国成人社区获得性肺炎诊断和治疗指南(2016年版)[J].中华结核和呼吸杂志201639(4):253-279.
12
王辉,马筱玲,宁永忠,等.细菌与真菌涂片镜检和培养结果报告规范专家共识[J].中华检验医学杂志201740(1):17-30.
13
Hoffmann B, Tappe D, Hoper D, et al. A variegated squirrel bornavirus associated with fatal human encephalitis[J]. N Engl J Med, 2015, 373 (2): 154-162.
14
Langelier C, Zinter MS, Kalantar K, et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients[J]. Am J Respir Crit Care Med, 2018, 197 (4): 524-528.
15
Yu G, Zhao W, Shen Y, et al. Metagenomic next generation sequencing for the diagnosis of tuberculosis meningitis: a systematic review and meta-analysis[J]. PLoS One, 2020, 15 (12): e243161.
16
Ren D, Ren C, Yao R, et al. The microbiological diagnostic performance of metagenomic next-generation sequencing in patients with sepsis[J]. BMC Infect Dis, 2021, 21 (1): 1257.
17
Wang Q, Miao Q, Pan J, et al. The clinical value of metagenomic next-generation sequencing in the microbiological diagnosis of skin and soft tissue infections[J]. Int J Infect Dis, 2020 (100): 414-420.
18
Huang ZD, Zhang ZJ, Yang B, et al. Pathogenic detection by metagenomic next-generation sequencing in osteoarticular infections[J]. Front Cell Infect Microbiol, 2020 (10): 471.
19
Schlaberg R, Chiu CY, Miller S, et al. Validation of metagenomic next-generation sequencing tests for universal pathogen detection[J]. Arch Pathol Lab Med, 2017, 141 (6): 776-786.
20
陈宏斌,赵春江,王辉,等. 2007-2013年医院内获得性肺炎病原菌分布及其耐药性分析[J].中华医院感染学杂志201727(1):1-7,15.
21
Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018, 66 (5): 778-788.
22
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis[J]. J Infect, 2020, 81 (4): 567-574.
23
Hardak E, Avivi I, Berkun L, et al. Polymicrobial pulmonary infection in patients with hematological malignancies: prevalence, co-pathogens, course and outcome[J]. Infection, 2016, 44 (4): 491-497.
24
缪青,马玉燕,胡必杰.基于宏基因二代测序技术检测呼吸道病毒的临床应用[J].中华医院感染学杂志201828(12):1908-1912.
25
Salzberg SL, Breitwieser FP, Kumar A, et al. Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system[J]. Neurol Neuroimmunol Neuroinflamm, 2016, 3 (4): e251.
26
Wang S, Ai J, Cui P, et al. Diagnostic value and clinical application of next-generation sequencing for infections in immunosuppressed patients with corticosteroid therapy[J]. Ann Transl Med, 2020, 8 (5): 227.
27
Taylor LJ, Abbas A, Bushman FD. Grabseqs: simple downloading of reads and metadata from multiple next-generation sequencing data repositories[J]. Bioinformatics, 2020, 36 (11): 3607-3609.
28
Nilsson AC, Bjorkman P, Persson K. Polymerase chain reaction is superior to serology for the diagnosis of acute mycoplasma pneumoniae infection and reveals a high rate of persistent infection[J]. BMC Microbiol, 2008 (8): 93.
29
Liu D, Zhang C, Wang Y, et al. Challenges and considerations on quality control and evaluation of pathogen metagenomic next-generation sequencing[J]. Sheng Wu Gong Cheng Xue Bao, 2020, 36 (12): 2598-2609.
30
Gao G, Smith DI. Clinical massively parallel sequencing[J]. Clin Chem, 2020, 66 (1): 77-88.
31
Consensus Group of Experts on Application of Metagenomic Next Generation Sequencing in the Pathogen Diagnosis in Clinical Moderate and Severe Infections, Professional Committee of Sepsis and Shock Chinese Research Hospital Association, Professional Committee of Microbial Toxins Chinese Society for Microbiology, et al. Expert consensus for the application of metagenomic next generation sequencing in the pathogen diagnosis in clinical moderate and severe infections (first edition)[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2020, 32 (5): 531-536.
[1] 李世杰, 申传安. 烧伤合并吸入性损伤患者呼吸机相关肺炎的研究现状[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 351-355.
[2] 张胜伟, 孟召路, 热汗古丽·吾休尔, 万世森, 闫鹏, 阳乔. 肺炎支原体诱发反应性感染性皮疹黏膜疹一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 309-313.
[3] 周冠宇, 谭鲁平, 杨亚晶, 李晓光. 1 916例肠道门诊食源性疾病患者病原学监测和临床特征[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 200-206.
[4] 郑宝英, 黄小兰, 贾楠, 朱春梅. 儿童难治性肺炎支原体肺炎早期预警指标[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 215-221.
[5] 徐保平, 彭怀文, 喻怀斌, 王晓涛. 新型冠状病毒肺炎继发糖尿病酮症酸中毒合并肝门静脉积气一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 250-255.
[6] 于燕兴, 梅喜庆, 刘凤娟, 于梓薇, 许亚慧, 徐飞. 高通量测序重症肺炎肺泡灌洗液病原体的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 785-788.
[7] 刘雯, 赵明栋, 夏伟, 潘以雄. 不同剂量比阿培南治疗重症肺炎的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 789-792.
[8] 刘春军, 严方方, 王宝锋, 常婷婷, 郭红红, 李志强. 替加环素联合人免疫球蛋白治疗XDRAB致VAP 的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 797-800.
[9] 胡菊英, 李银华, 洪兰, 王宏勇, 丁先军, 李承美, 谭心海. 儿童感染大叶性肺炎与支气管肺炎临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 813-816.
[10] 晏彦, 杨军, 周凤兰, 孙登昆, 陈玉. 哌拉西林他唑巴坦和哌拉西林舒巴坦治疗细菌性肺炎的倾向性匹配分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 817-819.
[11] 燕红玲, 王岩岩, 陈树斌. PCT、NLR联合LUBS预测ICU CRKP致呼吸机相关肺炎撤机及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 617-620.
[12] 林英, 何洪, 杨琦, 姚兴伟, 马婧涵, 杨玉婷, 刘月红, 贾悦, 李长安. 联合宏基因组二代测序诊断普雷沃氏菌致肺脓肿1例并文献复习[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 625-629.
[13] 张怡, 王宇洋, 司梦娇, 曹燕, 李欢欢. 脑卒中前白蛋白与肺炎发生风险相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 648-651.
[14] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[15] 段伟, 刘飞, 许光源, 程宇豪, 陈星. 食管癌调强放疗计划剂量学参数差异对放射性肺炎发生及严重程度的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 320-324.
阅读次数
全文


摘要