切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2023, Vol. 16 ›› Issue (01) : 20 -27. doi: 10.3877/cma.j.issn.1674-6880.2023.01.004

论著

宏基因组二代测序技术在社区获得性肺炎患者病原学检测中的应用
刘艳波1, 陆远强2,()   
  1. 1. 310003 杭州,浙江大学医学院附属第一医院急诊科 浙江省增龄与理化损伤性疾病诊治研究重点实验室(现工作单位为浙江大学医学院附属邵逸夫医院急诊科)
    2. 310003 杭州,浙江大学医学院附属第一医院急诊科 浙江省增龄与理化损伤性疾病诊治研究重点实验室
  • 收稿日期:2022-09-21 出版日期:2023-02-28
  • 通信作者: 陆远强
  • 基金资助:
    浙江省重点研发计划项目(2019C03076)

Application of metagenomic next-generation sequencing technology in the pathogenic detection of community-acquired pneumonia

Yanbo Liu1, Yuanqiang Lu2,()   

  1. 1. Department of Emergency, Zhejiang Provincial Key Laboratory of Diagnosis and Treatment of Aging and Physical-chemical Injury Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  • Received:2022-09-21 Published:2023-02-28
  • Corresponding author: Yuanqiang Lu
引用本文:

刘艳波, 陆远强. 宏基因组二代测序技术在社区获得性肺炎患者病原学检测中的应用[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 20-27.

Yanbo Liu, Yuanqiang Lu. Application of metagenomic next-generation sequencing technology in the pathogenic detection of community-acquired pneumonia[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2023, 16(01): 20-27.

目的

评价宏基因组二代测序(mNGS)技术在社区获得性肺炎(CAP)病原体检测中的应用价值。

方法

回顾性分析2021年2月至8月于浙江大学医学院附属第一医院临床诊断为CAP并行mNGS检测及实验室常规方法检查的345例住院患者的临床资料。记录每位患者的人口学特征、mNGS检测与实验室常规方法检查的结果、抗感染方案和调整方案前后C反应蛋白(CRP)及降钙素原(PCT)水平。

结果

实验室常规方法检测为阳性的患者有173例,发现33种微生物;mNGS检测为阳性患者共315例,发现130种微生物。mNGS检测阳性率较实验室常规方法显著提高[91.30%(315/345)vs. 50.14%(173/345),χ2 = 129.097,P < 0.001],一致性检验Kappa = 0.105,P = 0.001。且在抗生素暴露的294例患者中,mNGS阳性率显著高于实验室常规方法[90.48%(266/294)vs. 49.32%(145/294),χ2 = 109.924,P < 0.001]。同时,mNGS与实验室常规方法确诊率的比较,差异具有统计学意义[85.22%(294/345)vs. 39.13%(135/345),χ2 = 141.040,P < 0.001]。与入院时比较,调整抗感染方案后3 d,基于mNGS检测结果作为病原学诊断依据的患者CRP[68(24,118)mg/L vs. 12(5,46)mg/L,Z = 6.154,P < 0.001]及PCT[0.53(0.20,0.93)μg/L vs. 0.25(0.08,0.54)μg/L,Z = 2.572,P = 0.010]水平均显著降低。

结论

在CAP患者病原学的检测中,mNGS技术具有既往抗生素暴露的影响少、检测病原体广泛等优点,可以作为一种可行的补充手段。

Objective

To evaluate the clinical application value of metagenomic next-generation sequencing (mNGS) technology in the diagnosis of community-acquired pneumonia (CAP) pathogens.

Methods

A total of 345 inpatients who were clinically diagnosed with CAP and examined by mNGS and laboratory routine methods in the First Affiliated Hospital, Zhejiang University School of Medicine from February to August 2021 were retrospectively analyzed, and their clinical data were collected. The demographic characteristics, the results of mNGS and laboratory routine tests, the anti-infection regimen, and the levels of C-reactive protein (CRP) and procalcitonin (PCT) before and after regimen adjustment were recorded.

Results

There were 173 positive patients tested by laboratory routine methods with 33 microorganisms, and 315 positive patients by mNGS with 130 microorganisms. The positive rate of mNGS was much higher than that of laboratory routine methods [91.30% (315/345) vs. 50.14% (173/345), χ2 = 129.097, P < 0.001], with the consistency test Kappa = 0.105, P = 0.001. The positive rate of mNGS in the 294 patients exposed to antibiotics was also significantly higher than that of laboratory routine methods [90.48% (266/294) vs. 49.32% (145/294), χ2 = 109.924, P < 0.001]. Meanwhile, there was a statistically significant difference in the diagnosis rate between mNGS and laboratory routine methods [85.22% (294/345) vs. 39.13% (135/345), χ2 = 141.040, P < 0.001]. Compared with at admission, the levels of CRP [68 (24, 118) mg/L vs. 12 (5, 46) mg/L, Z = 6.154, P < 0.001] and PCT [0.53 (0.20, 0.93) μg/L vs. 0.25 (0.08, 0.54) μg/L, Z = 2.572, P = 0.010] in the patients with mNGS results as the basis for etiological diagnosis decreased markedly on the third day after adjusting the anti-infection regimen.

Conclusion

In the etiological detection of CAP patients, the mNGS technology has the advantages of less impact of previous antibiotic exposure and broader detection of pathogens, which can be a feasible supplementary means.

表1 mNGS与实验室常规方法对CAP患者检测结果的比较(例)
表2 7例CAP患者耐药基因与药物敏感试验结果
1
GBD 2015 LRI Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet Infect Dis, 2017, 17 (11): 1133-1161.
2
Cilloniz C, Martin-Loeches I, Garcia-Vidal C, et al. Microbial etiology of pneumonia: epidemiology, diagnosis and resistance patterns[J]. Int J Mol Sci, 2016, 17 (12): 2120.
3
Miller JM, Binnicker MJ, Campbell S, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology[J]. Clin Infect Dis, 2018, 67 (6): e1-e94.
4
Haslam DB. Future applications of metagenomic next-generation sequencing for infectious diseases diagnostics[J]. J Pediatric Infect Dis Soc, 2021, 10 (Supplement_4): S112-S117.
5
Zhu YG, Tang XD, Lu YT, et al. Contemporary situation of community-acquired pneumonia in china: a systematic review[J]. J Transl Int Med, 2018, 6 (1): 26-31.
6
《中华传染病杂志》编辑委员会.中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J].中华传染病杂志202038(11):681-689.
7
Ambardar S, Gupta R, Trakroo D, et al. High throughput sequencing: an overview of sequencing chemistry[J]. Indian J Microbiol, 2016, 56 (4): 394-404.
8
Duan H, Li X, Mei A, et al. The diagnostic value of metagenomic next-generation sequencing in infectious diseases[J]. BMC Infect Dis, 2021, 21 (1): 62.
9
Zhang D, Yang X, Wang J, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in patients with lower respiratory tract infections[J]. J Int Med Res, 2022, 50 (4): 3000605221089795.
10
Sun T, Wu X, Cai Y, et al. Metagenomic next-generation sequencing for pathogenic diagnosis and antibiotic management of severe community-acquired pneumonia in immunocompromised adults[J]. Front Cell Infect Microbiol, 2021 (11): 661589.
11
中华医学会呼吸病学分会.中国成人社区获得性肺炎诊断和治疗指南(2016年版)[J].中华结核和呼吸杂志201639(4):253-279.
12
王辉,马筱玲,宁永忠,等.细菌与真菌涂片镜检和培养结果报告规范专家共识[J].中华检验医学杂志201740(1):17-30.
13
Hoffmann B, Tappe D, Hoper D, et al. A variegated squirrel bornavirus associated with fatal human encephalitis[J]. N Engl J Med, 2015, 373 (2): 154-162.
14
Langelier C, Zinter MS, Kalantar K, et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients[J]. Am J Respir Crit Care Med, 2018, 197 (4): 524-528.
15
Yu G, Zhao W, Shen Y, et al. Metagenomic next generation sequencing for the diagnosis of tuberculosis meningitis: a systematic review and meta-analysis[J]. PLoS One, 2020, 15 (12): e243161.
16
Ren D, Ren C, Yao R, et al. The microbiological diagnostic performance of metagenomic next-generation sequencing in patients with sepsis[J]. BMC Infect Dis, 2021, 21 (1): 1257.
17
Wang Q, Miao Q, Pan J, et al. The clinical value of metagenomic next-generation sequencing in the microbiological diagnosis of skin and soft tissue infections[J]. Int J Infect Dis, 2020 (100): 414-420.
18
Huang ZD, Zhang ZJ, Yang B, et al. Pathogenic detection by metagenomic next-generation sequencing in osteoarticular infections[J]. Front Cell Infect Microbiol, 2020 (10): 471.
19
Schlaberg R, Chiu CY, Miller S, et al. Validation of metagenomic next-generation sequencing tests for universal pathogen detection[J]. Arch Pathol Lab Med, 2017, 141 (6): 776-786.
20
陈宏斌,赵春江,王辉,等. 2007-2013年医院内获得性肺炎病原菌分布及其耐药性分析[J].中华医院感染学杂志201727(1):1-7,15.
21
Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018, 66 (5): 778-788.
22
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis[J]. J Infect, 2020, 81 (4): 567-574.
23
Hardak E, Avivi I, Berkun L, et al. Polymicrobial pulmonary infection in patients with hematological malignancies: prevalence, co-pathogens, course and outcome[J]. Infection, 2016, 44 (4): 491-497.
24
缪青,马玉燕,胡必杰.基于宏基因二代测序技术检测呼吸道病毒的临床应用[J].中华医院感染学杂志201828(12):1908-1912.
25
Salzberg SL, Breitwieser FP, Kumar A, et al. Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system[J]. Neurol Neuroimmunol Neuroinflamm, 2016, 3 (4): e251.
26
Wang S, Ai J, Cui P, et al. Diagnostic value and clinical application of next-generation sequencing for infections in immunosuppressed patients with corticosteroid therapy[J]. Ann Transl Med, 2020, 8 (5): 227.
27
Taylor LJ, Abbas A, Bushman FD. Grabseqs: simple downloading of reads and metadata from multiple next-generation sequencing data repositories[J]. Bioinformatics, 2020, 36 (11): 3607-3609.
28
Nilsson AC, Bjorkman P, Persson K. Polymerase chain reaction is superior to serology for the diagnosis of acute mycoplasma pneumoniae infection and reveals a high rate of persistent infection[J]. BMC Microbiol, 2008 (8): 93.
29
Liu D, Zhang C, Wang Y, et al. Challenges and considerations on quality control and evaluation of pathogen metagenomic next-generation sequencing[J]. Sheng Wu Gong Cheng Xue Bao, 2020, 36 (12): 2598-2609.
30
Gao G, Smith DI. Clinical massively parallel sequencing[J]. Clin Chem, 2020, 66 (1): 77-88.
31
Consensus Group of Experts on Application of Metagenomic Next Generation Sequencing in the Pathogen Diagnosis in Clinical Moderate and Severe Infections, Professional Committee of Sepsis and Shock Chinese Research Hospital Association, Professional Committee of Microbial Toxins Chinese Society for Microbiology, et al. Expert consensus for the application of metagenomic next generation sequencing in the pathogen diagnosis in clinical moderate and severe infections (first edition)[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2020, 32 (5): 531-536.
[1] 段燕, 郭欣, 吕慧芳, 王国利, 黄明光, 董英俊. 乳腺癌患者辅助化疗后感染肺孢子菌一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 318-321.
[2] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[3] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[4] 杨梅, 周春, 赵艾红, 王琴. 儿童难治性肺炎支原体肺炎所致塑型性支气管炎风险列线图模型的构建[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 274-281.
[5] 武元星, 任建伟, 朱光发. 181例心脏外科患者发生血流感染危险因素分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 230-237.
[6] 贾志芳, 尚培中, 郭伟林, 李艳艳, 宋创业. 肺炎克雷伯杆菌性肝脓肿并发内源性眼内炎三例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 351-353.
[7] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[8] 胡皓翀, 刘一霆, 郭嘉瑜, 邹寄林, 陈忠宝, 周江桥, 邱涛. 肾移植术后耐碳青霉烯类肺炎克雷伯菌感染的诊疗分析[J]. 中华移植杂志(电子版), 2023, 17(04): 246-249.
[9] 安钱, 徐彬, 陈志祥, 徐晶晶, 黄丹丹. PCT、CRP及SAA对呼吸机相关性肺炎病情严重程度和预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 544-546.
[10] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[11] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
[12] 余林阳, 王美英, 李建斌, 楼骁斌, 谢思远, 马志忠, 齐海英, 李稼. 高原地区肺炎合并右心功能衰竭体征患儿的肺动脉压力和心脏形态与功能的特征[J]. 中华临床医师杂志(电子版), 2023, 17(05): 535-544.
[13] 于洋, 刘孝洁, 王丽娟, 高宇晨, 丁瑶, 敖虎山. 新冠肺炎常态化条件下心肺复苏培训模式初探[J]. 中华临床医师杂志(电子版), 2023, 17(04): 483-486.
[14] 邱学荣, 张秀琴, 张欢, 刘婷, 高翠琴. 动态监测SAA给予抗生素在电子支气管镜联合普米克令舒治疗重症肺炎中的价值研究[J]. 中华临床医师杂志(电子版), 2023, 17(03): 308-313.
[15] 王燕, 郭蕊, 王淑杰. 老年烧伤气管切开患者死亡风险诊断模型构建及对策分析[J]. 中华诊断学电子杂志, 2023, 11(04): 249-253.
阅读次数
全文


摘要