切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2022, Vol. 15 ›› Issue (06) : 486 -489. doi: 10.3877/cma.j.issn.1674-6880.2022.06.010

短篇论著

冠状动脉慢性完全闭塞患者血清微小RNA-126变化的临床意义
齐旭浩1, 卢凯1,()   
  1. 1. 313000 浙江湖州,湖州市第一人民医院心内科
  • 收稿日期:2022-03-27 出版日期:2022-12-31
  • 通信作者: 卢凯

Clinical significance of serum microRNA-126 changes in patients with chronic total occlusion of coronary arteries Qi Xuhao, Lu Kai

Xuhao Qi1, Kai Lu1()   

  • Received:2022-03-27 Published:2022-12-31
  • Corresponding author: Kai Lu
引用本文:

齐旭浩, 卢凯. 冠状动脉慢性完全闭塞患者血清微小RNA-126变化的临床意义[J]. 中华危重症医学杂志(电子版), 2022, 15(06): 486-489.

Xuhao Qi, Kai Lu. Clinical significance of serum microRNA-126 changes in patients with chronic total occlusion of coronary arteries Qi Xuhao, Lu Kai[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2022, 15(06): 486-489.

目的

检测血清微小RNA-126(miR-126)在冠状动脉慢性完全闭塞(CTO)患者循环中的改变,并探讨其与CTO患者冠状动脉侧枝循环以及预后的关系。

方法

回顾性分析2015年1月至2020年12月湖州市第一人民医院收治的造影结果为CTO病变的冠状动脉粥样硬化性心脏病患者。根据Rentrop分级,将65例患者分为侧枝循环良好组(30例)及侧枝循环不良组(35例),收集所有患者的临床一般资料、血常规、血生化结果。提取血清RNA,通过荧光定量PCR检测血清miR-126的表达水平。采用Pearson相关分析探讨血清miR-126与低密度脂蛋白胆固醇(LDL-C)、B型脑钠肽(BNP)、肌钙蛋白I(TnI)、左心室射血分数(LVEF)的关系,并绘制受试者工作特征(ROC)曲线分析血清miR-126对CTO侧枝循环形成的诊断价值。比较血清miR-126高表达者与低表达者的主要不良心血管事件和死亡情况。

结果

侧枝循环良好组患者血清miR-126表达水平显著高于侧枝循环不良组[(25 ± 8)vs.(6 ± 4),t=8.745,P=0.001],并且miR-126与LDL-C、BNP、TnI均呈负相关(r=-0.645、-0.589、-0.625,P=0.041、0.012、0.021),与LVEF呈正相关(r=0.618,P=0.038)。miR-126诊断CTO侧枝循环形成良好的曲线下面积为0.876[95%置信区间(0.820,0.939),P<0.001],在最佳截断值15.17处敏感度为79.4%、特异度为88.7%。根据miR-126最佳截断值15.17将所有CTO患者分为高表达组(31例,miR-126 ≥ 15.17)和低表达组(34例,miR-126<15.17)。所有患者随访1年发现miR-126高表达组患者的主要心血管事件发生率[19.35%(6/31)vs. 35.29%(12/34)]和病死率[6.45%(2/31)vs. 14.71%(5/34)]均明显低于低表达组(χ2=2.057、1.150,P=0.015、0.028)。

结论

miR-126参与CTO患者侧枝循环的形成,其降低提示预后不良。

表1 两组CTO患者一般临床资料比较( ± s
图1 血清miR-126对CTO患者侧枝循环情况评价的ROC曲线分析注:miR-126.微小RNA-126;CTO.慢性完全闭塞;ROC.受试者工作特征
1
Gülker JE, Bansemir L, Klues HG, et al. Chronic total coronary occlusion recanalization: current techniques and new devices[J]. J Saudi Heart Assoc, 2017, 29 (2): 110-115.
2
Koelbl CO, Nedeljkovic ZS, Jacobs AK. Coronary chronic total occlusion (CTO): a review[J]. Rev Cardiovasc Med, 2018, 19 (1): 33-39.
3
Sun Z, Ou C, Liu J, et al. YAP1-induced MALAT1 promotes epithelial-mesenchymal transition and angiogenesis by sponging miR-126-5p in colorectal cancer[J]. Oncogene, 2019, 38 (14): 2627-2644.
4
Rentrop KP, Cohen M, Blanke H, et al. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects[J]. J Am Coll Cardiol, 1985, 5 (3): 587-592.
5
Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease[J]. J Mol Cell Cardiol, 2016 (97): 47-55.
6
Kuhnert F, Mancuso MR, Hampton J, et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126[J]. Development, 2008, 135 (24): 3989-3993.
7
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J]. Dev Cell, 2008, 15 (2): 261-271.
8
Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity[J]. Dev Cell, 2008, 15 (2): 272-284.
9
Sessa R, Seano G, di Blasio L, et al. The miR-126 regulates angiopoietin-1 signaling and vessel maturation by targeting p85β[J]. Biochim Biophys Acta, 2012, 1823 (10): 1925-1935.
10
Wang JQ, Gu WP, Deng QQ, et al. Endothelial progenitor cell miR-126 promotes homing of endothelial progenitor cells within arterial thrombus in patients with cerebral infarction and its molecular mechanism[J]. Eur Rev Med Pharmacol Sci, 2018, 22 (4): 1078-1083.
11
van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis[J]. J Cell Mol Med, 2009, 13 (8A): 1577-1585.
12
Meng S, Cao JT, Zhang B, et al. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1[J]. J Mol Cell Cardiol, 2012, 53 (1): 64-72.
13
Kin K, Miyagawa S, Fukushima S, et al. Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm[J]. J Am Heart Assoc, 2012, 1 (5): e000745.
14
Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J]. Circ Res, 2010, 107 (6): 810-817.
15
Sun X, Zhang M, Sanagawa A, et al. Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol[J]. Thromb J, 2012, 10 (1): 16.
[1] 徐丹, 殷明, 余苗, 杨柳青. 社区获得性肺炎外周血miR-182及miR-126的表达及临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 197-199.
[2] 刘士超. 经桡动脉介入治疗冠状动脉慢性完全闭塞病变效果观察[J]. 中华心脏与心律电子杂志, 2018, 06(01): 4-6.
阅读次数
全文


摘要