切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2022, Vol. 15 ›› Issue (04) : 265 -270. doi: 10.3877/cma.j.issn.1674-6880.2022.04.001

论著

生物信息学分析筛选慢性阻塞性肺疾病急性加重的关键致病基因
冯芳1,(), 杨虎勇2, 杨伟伟2, 陈宇1   
  1. 1. 730030 兰州,兰州大学第二医院重症医学科
    2. 731100 甘肃临夏回族自治州,临夏州人民医院重症医学科
  • 收稿日期:2022-01-08 出版日期:2022-08-31
  • 通信作者: 冯芳
  • 基金资助:
    2021年度省级重点人才项目和陇原青年创新创业人才(团队)项目(2021-17-1)

Bioinformatics analysis to screen key pathogenic genes in acute exacerbation of chronic obstructive pulmonary disease

Fang Feng1,(), Huyong Yang2, Weiwei Yang2, Yu Chen1   

  1. 1. Department of Intensive Care Unit, Lanzhou University Second Hospital, Lanzhou 730030, China
    2. Department of Intensive Care Unit, the People's Hospital of Linxia, Linxia 731100, China
  • Received:2022-01-08 Published:2022-08-31
  • Corresponding author: Fang Feng
引用本文:

冯芳, 杨虎勇, 杨伟伟, 陈宇. 生物信息学分析筛选慢性阻塞性肺疾病急性加重的关键致病基因[J]. 中华危重症医学杂志(电子版), 2022, 15(04): 265-270.

Fang Feng, Huyong Yang, Weiwei Yang, Yu Chen. Bioinformatics analysis to screen key pathogenic genes in acute exacerbation of chronic obstructive pulmonary disease[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2022, 15(04): 265-270.

目的

通过生物信息学分析筛选慢性阻塞性肺疾病急性加重(AECOPD)的关键致病基因。

方法

从基因表达谱(GEO)数据库下载GSE60399数据集,该数据集包含AECOPD患者(AECOPD组)与健康人和稳定期慢性阻塞性肺疾病(COPD)患者(对照组)的外周血单个核细胞(PBMCs)基因数据。使用GEO2R分析工具筛选AECOPD组与对照组PBMCs的差异表达基因(DEGs)。采用DAVID 6.8数据库进行基因本体(GO)分析和京都基因与基因组百科(KEGG)富集分析。利用STRING在线数据库对DEGs编码蛋白进行蛋白质-蛋白质相互作用(PPI)网络分析,并使用Cytoscape确定前10位DEGs。

结果

从GSE60399数据集中共筛选出106个DEGs,其中94个上调基因和12个下调基因。GO分析显示,106个DEGs主要涉及3条生物途径、6类细胞定位和2类细胞功能;KEGG富集分析显示,106个DEGs主要包括百日咳、补体系统、金黄色葡萄球菌感染、系统性红斑狼疮、细胞黏附分子和美洲锥虫病6条KEGG通路。PPI网络图筛选出了前10位关键DEGs,包括纤维连接蛋白1(FN1)、血管内皮生长因子A(VEGFA)、肌动蛋白α2(ACTA2)、结缔组织生长因子(CCN2)、基质金属蛋白酶2(MMP2)、齿状蛋白1(JAG1)、正常上皮细胞特异性基因(NES)、细胞角蛋白19(KRT19)、粘附素5(CDH5)、黑素瘤细胞黏附分子(MCAM),均为上调基因。

结论

FN1、VEGFA、ACTA2、CCN2、MMP2、JAG1、NES、KRT19、CDH5及MCAM是AECOPD患者的关键致病基因,今后可通过深入研究这些基因来进一步阐明AECOPD发生发展的机制。

Objective

To screen key pathogenic genes in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) by bioinformatics analysis.

Methods

The GSE60399 dataset was downloaded from the gene expression omnibus (GEO). The dataset included gene data of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD (AECOPD group) versus healthy individuals and patients with stable chronic obstructive pulmonary disease (control group). The differentially expressed genes (DEGs) of PBMCs between the AECOPD group and control group were screened by the GEO2R analysis tool. Gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were performed to select DEGs using the DAVID 6.8 database. Protein-protein interaction (PPI) network analysis was constructed on DEGs encoded proteins using the STRING online database, and the Cytoscape software was used to screen the top 10 key genes.

Results

A total of 106 DEGs were identified from the GSE60399 dataset, including 94 up-regulated genes and 12 down-regulated genes. GO analysis showed that the 106 DEGs were mainly involved in three biological pathways, six types of cell localization and two types of cell functions. KEGG enrichment analysis showed that the 106 DEGs mainly comprised six KEGG pathways including pertussis, complement system, staphylococcus aureus infection, systemic lupus erythematosus, cell adhesion molecules and American trypanosomiasis. The PPI network screened out 10 key genes, including fibronectin 1 (FN1), vascular endothelial growth factor A (VEGFA), actin-alpha 2 (ACTA2), connective tissue growth factor (CCN2), matrix metalloproteinase 2 (MMP2), jagged 1 (JAG1), normal epithelial cell specific (NES), cytokeratin 19 (KRT19), cadherin 5 (CDH5) and melanoma cell adhesion molecule (MCAM), which were all up-regulated genes.

Conclusion

FN1, VEGFA, ACTA2, CCN2, MMP2, JAG1, NES, KRT19, CDH5 and MCAM are key pathogenic genes in patients with AECOPD, and studies on these genes can further clarify mechanisms of occurrence and development of AECOPD.

图1 GSE60399数据集中AECOPD组与对照组患者DEGs火山图注:AECOPD.慢性阻塞性肺疾病急性加重;DEGs.差异表达基因;FC.差异倍数;共筛选到106个DEGs,其中94个为上调基因,12个为下调基因,红色代表上调基因,蓝色代表下调基因;图中每一个点代表一个基因
表1 GSE60399数据集中AECOPD组与对照组患者DEGs的GO分析及KEGG通路富集分析
表2 GSE60399数据集中AECOPD组与对照组患者前10位关键DEGs
图2 PPI网络分析图注:PPI.蛋白质相互作用;节点对应基因,边代表基因之间的联系
图3 PPI网络前10位关键基因注:PPI.蛋白质相互作用;不同颜色代表节点度高低不同,节点度由高到低,颜色依次为红色、橙色、黄色
1
Halpin DMG, Criner GJ, Papi A, et al. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease: the 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2020, 203 (1): 24-36.
2
Fang X, Wang X, Bai C. COPD in China: the burden and importance of proper management[J]. Chest, 2011, 139 (4): 920-929.
3
Ritchie AI, Wedzicha JA. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations[J]. Clin Chest Med, 2020, 41 (3): 421-438.
4
邹晓月,韩慧,包芸,等.慢性阻塞性肺疾病急性加重期患者有创-无创序贯治疗中无创通气时长的临床研究[J/CD].中华危重症医学杂志(电子版)201811(5):357-360.
5
张定峰,左祥荣,曹权.慢性阻塞性肺疾病急性加重期患者急性胃肠损伤发生率及其预后研究[J/CD].中华危重症医学杂志(电子版)20169(5):334-338.
6
Bahr TM, Hughes GJ, Armstrong M, et al. Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease[J]. Am J Respir Cell Mol Biol, 2013, 49 (2): 316-323.
7
Wu X, Sun X, Chen C et al. Dynamic gene expressions of peripheral blood mononuclear cells in patients with acute exacerbation of chronic obstructive pulmonary disease: a preliminary study[J]. Crit Care, 2014, 18 (6): 508.
8
Pinto-Plata V, Toso J, Lee K, et al. Profiling serum biomarkers in patients with COPD: associations with clinical parameters[J]. Thorax, 2007, 62 (7): 595-601.
9
Bhattacharya S, Tyagi S, Srisuma S, et al. Peripheral blood gene expression profiles in COPD subjects[J]. J Clin Bioinforma, 2011, 1 (1): 12.
10
Rupp J, Kothe H, Mueller A, et al. Imbalanced secretion of IL-1beta and IL-1RA in Chlamydia pneumoniae-infected mononuclear cells from COPD patients[J]. Eur Respir J, 2003, 22 (2): 274-279.
11
To M, Yamamura S, Akashi K, et al. Defect of adaptation to hypoxia in patients with COPD due to reduction of histone deacetylase 7[J]. Chest, 2012, 141 (5): 1233-1242.
12
丁云红,吕雁群,郭品娥,等.血浆活性纤维连接蛋白及其降解产物在慢性阻塞性肺病中的意义[J].中华内科杂志199433(11):778,790.
13
刘娴娴,张杰,崔世超,等.结缔组织生长因子在慢性阻塞性肺疾病血管重建中表达研究[J].现代生物医学进展201111(9):1663-1666.
14
夏敬文,董樑,龚益,等.细胞角蛋白19片段与COPD合并症关系的探讨[J].临床肺科杂志201419(2):293-295.
15
胡悦,霍少娟,曾晓丽,等.肌动蛋白相关蛋白2/3复合体在慢性阻塞性肺疾病小鼠肺泡巨噬细胞吞噬功能中的作用[J].中华医学杂志201999(30):2355-2361.
16
Shirahata T, Nakamura H, Nakajima T, et al. Plasma sE-cadherin and the plasma sE-cadherin/sVE-cadherin ratio are potential biomarkers for chronic obstructive pulmonary disease[J]. Biomarkers, 2018, 23 (5): 414-421.
17
Schulz C, Petrig V, Wolf K, et al. Upregulation of MCAM in primary bronchial epithelial cells from patients with COPD[J]. Eur Respir J, 2003, 22 (3): 450-456.
18
张冬,王慧敏,何慧洁,等.黑素瘤细胞黏附分子在慢性阻塞性肺疾病中的表达及意义[J].中国当代医药201421(30):169-170,172.
19
Takahashi T, Kobayashi S, Fujino N, et al. Differences in the released endothelial microparticle subtypes between human pulmonary microvascular endothelial cells and aortic endothelial cells in vitro[J]. Exp Lung Res, 2013, 39 (4-5): 155-161.
20
Stopp S, Bornhauser M, Ugarte F, et al. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells[J]. Haematologica, 2013, 98 (4):505-513.
21
Quaderi SA, Hurst JR. The unmet global burden of COPD[J]. Glob Health Epidemiol Genom, 2018 (3): e4.
22
Sauler M, Bazan IS, Lee PJ. Cell death in the lung: the apoptosis-necroptosis axis[J]. Annu Rev Physiol, 2019 (81): 375-402.
23
Westergren-Thorsson G, Bagher M, Andersson-Sjoland A, et al. VEGF synthesis is induced by prostacyclin and TGF-β in distal lung fibroblasts from COPD patients and control subjects: implications for pulmonary vascular remodelling[J]. Respirology, 2018, 23 (1): 68-75.
24
Baraldo S, Bazzan E, Zanin ME, et al. Matrix metalloproteinase-2 protein in lung periphery is related to COPD progression[J]. Chest, 2007, 132 (6): 1733-1740.
25
Mahor D, Kumari V, Vashisht K, et al. Elevated serum matrix metalloprotease (MMP-2) as a candidate biomarker for stable COPD[J]. BMC Pulm Med, 2020, 20 (1): 302.
26
黄玮,钟捷,吴云林,等.正常上皮特异性-1基因在胃癌中的表达及其临床意义[J].中华消化杂志200626(12):845-846.
27
许秀娥,徐宏伟,葛银林,等. KDR siRNA对乳癌细胞凋亡和NES1与RUNX3基因甲基化影响[J].青岛大学医学院学报201046(4):295-297,300.
28
饶雪峰,刘伟中,吴鹤立,等. NES1基因在结肠癌细胞中表达及意义[J].江西医药201449(10):994-995,998.
29
曹虹,饶雪峰,邹霞,等. NES1基因在肝细胞肝癌中的表达及临床意义[J].江西医药201247(4):298-300.
30
Bocci F, Gearhart-Serna L, Boareto M, et al. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment[J]. Proc Natl Acad Sci U S A, 2019, 116 (1): 148-157.
[1] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[4] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[5] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[6] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[7] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[8] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[9] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[10] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[11] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[12] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[13] 王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.
[14] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
[15] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
阅读次数
全文


摘要