1 |
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 801-810.
|
2 |
Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock[J]. Ann Intern Med, 1984, 100 (4): 483-490.
|
3 |
李玉玲,康健,冯卓. 脓毒症心功能障碍的研究进展[J/CD]. 中华危重症医学杂志(电子版),2017,10(3):200-206.
|
4 |
Sato R, Nasu M. A review of sepsis-induced cardiomyopathy[J]. J Intensive Care, 2015 (3): 48.
|
5 |
Jardin F, Brun-Ney D, Auvert B, et al. Sepsis-related cardiogenic shock[J]. Crit Care Med, 1990, 18 (10): 1055-1060.
|
6 |
Bouhemad B, Nicolas-Robin A, Arbelot C, et al. Acute left ventricular dilatation and shock-induced myocardial dysfunction[J]. Crit Care Med, 2009, 37 (2): 441-447.
|
7 |
Vieillard-Baron A, Caille V, Charron C, et al. Actual incidence of global left ventricular hypokinesia in adult septic shock[J]. Crit Care Med, 2008, 36 (6): 1701-1706.
|
8 |
Etchecopar-Chevreuil C, Francois B, Clavel M, et al. Cardiac morphological and functional changes during early septic shock: a transesophageal echocardiographic study[J]. Intensive Care Med, 2008, 34 (2): 250-256.
|
9 |
Kong W, Kang K, Gao Y, et al. Dexmedetomidine alleviates LPS-induced septic cardiomyopathy via the cholinergic anti-inflammatory pathway in mice[J]. Am J Transl Res, 2017, 9 (11): 5040-5047.
|
10 |
Cimolai MC, Alvarez S, Bode C, et al. Mitochondrial mechanisms in septic cardiomyopathy[J]. Int J Mol Sci, 2015, 16 (8): 17763-17778.
|
11 |
Hobai IA, Edgecomb J, LaBarge K, et al. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy[J]. Shock, 2015, 43 (1): 3-15.
|
12 |
Kalbitz M, Grailer JJ, Fattahi F, et al. Role of extracellular histones in the cardiomyopathy of sepsis[J]. FASEB J, 2015, 29 (5): 2185-2193.
|
13 |
Turillazzi E, Fineschi V, Palmiere C, et al. Cardiovascular involvement in sepsis[J]. Mediators Inflamm, 2016: 8584793.
|
14 |
Kakihana Y, Ito T, Nakahara M, et al. Sepsis-induced myocardial dysfunction: pathophysiology and management[J]. J Intensive Care, 2016 (4): 22.
|
15 |
Ehrman RR, Sullivan AN, Favot MJ, et al. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature[J]. Crit Care, 2018, 22 (1): 112.
|
16 |
Zheng Y, Feng K, Yang H, et al. IL-22/IL-22R1 axis is involved in myocardial injury of a mouse cecal ligation and puncture model[J]. Am J Transl Res, 2019, 11 (2): 998-1008.
|
17 |
Phua J, Koay ES, Lee KH. Lactate, procalcitonin, and amino-terminal pro-B-type natriuretic peptide versus cytokine measurements and clinical severity scores for prognostication in septic shock[J]. Shock, 2008, 29 (3): 328-333.
|
18 |
伊孙邦,胡雨峰,林素涵,等. 不同时间段血乳酸水平对脓毒症院内死亡的预测价值比较:基于重症监护医学信息数据库[J/CD]. 中华危重症医学杂志(电子版),2020,13(1):39-43.
|
19 |
Trzeciak S, Dellinger RP, Chansky ME, et al. Serum lactate as a predictor of mortality in patients with infection[J]. Intensive Care Med, 2007, 33 (6): 970-977.
|
20 |
Okorie ON, Dellinger P. Lactate: biomarker and potential therapeutic target[J]. Crit Care Clin, 2011, 27 (2): 299-326.
|
21 |
简娟,贺志飚,刘继强,等. 胆碱酯酶、乳酸对脓毒症患者病情严重程度及预后的评估价值[J/CD]. 中华危重症医学杂志(电子版),2020,13(5):339-344.
|
22 |
Favory R, Neviere R. Significance and interpretation of elevated troponin in septic patients[J]. Crit Care, 2006, 10 (4): 224.
|
23 |
Frencken JF, Donker DW, Spitoni C, et al. Myocardial injury in patients with sepsis and its association with long-term outcome[J]. Circ Cardiovasc Qual Outcomes, 2018, 11 (2): e004040.
|
24 |
Schmitz M, Tillmann FP, Paluckaite A, et al. Mortality risk factors in intensive care unit patients with acute kidney injury requiring renal replacement therapy: a retrospective cohort study[J]. Clin Nephrol, 2017, 88 (1): 27-32.
|
25 |
Godinjak A, Iglica A, Rama A, et al. Predictive value of SAPS Ⅱ and APACHE Ⅱ scoring systems for patient outcome in a medical intensive care unit[J]. Acta Med Acad, 2016, 45(2): 97-103.
|