切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2022, Vol. 15 ›› Issue (03) : 177 -182. doi: 10.3877/cma.j.issn.1674-6880.2022.03.001

论著

脓毒症心肌病发病率及相关危险因素分析
王婵1, 李博玲1, 史晓娟1, 荆程桥1, 董道然1, 宗媛1,()   
  1. 1. 710068 西安,陕西省人民医院重症医学科
  • 收稿日期:2021-10-29 出版日期:2022-06-30
  • 通信作者: 宗媛

Analysis of incidence and related risk factors of septic cardiomyopathy

Chan Wang1, Boling Li1, Xiaojuan Shi1, Chengqiao Jing1, Daoran Dong1, Yuan Zong1,()   

  1. 1. Department of Intensive Care Unit, Shaanxi Provincial People's Hospital, Xi'an 710068, China
  • Received:2021-10-29 Published:2022-06-30
  • Corresponding author: Yuan Zong
引用本文:

王婵, 李博玲, 史晓娟, 荆程桥, 董道然, 宗媛. 脓毒症心肌病发病率及相关危险因素分析[J/OL]. 中华危重症医学杂志(电子版), 2022, 15(03): 177-182.

Chan Wang, Boling Li, Xiaojuan Shi, Chengqiao Jing, Daoran Dong, Yuan Zong. Analysis of incidence and related risk factors of septic cardiomyopathy[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2022, 15(03): 177-182.

目的

研究脓毒症心肌病(SCM)的发病率及其相关危险因素。

方法

回顾性分析2019年1月至2021年4月期间入住陕西省人民医院ICU的228例脓毒症及脓毒性休克患者,根据是否出现SCM分为SCM组(42例)与非SCM组(186例)。对两组患者的临床资料进行比较,采用多因素Logistic回归模型分析SCM发病的相关危险因素。同时,绘制受试者工作特征(ROC)曲线评价各指标对SCM发生的预测价值。

结果

SCM在脓毒症及脓毒性休克患者中的发病率为18.4%(42/228);与非SCM组患者比较,SCM组患者的年龄更高(t = 5.309,P<0.001),冠状动脉粥样硬化性心脏病(CHD)、心房颤动、心力衰竭、慢性肾衰竭占比更高(χ2 = 5.090,P = 0.024;χ2 = 6.399,P = 0.011;χ2 = 31.848,P<0.001;χ2 = 3.979,P = 0.046),白细胞(WBC)、乳酸、肌酸激酶同工酶、高敏心肌肌钙蛋白T(hs-cTnT)及急性病生理学和长期健康评价(APACHE)Ⅱ评分均更高(t = 4.560,P <0.001;Z = 3.855,P<0.001;Z = 2.075,P = 0.038;Z = 5.513,P <0.001;Z = 5.913,P <0.001)。多因素Logistic回归分析显示,年龄[比值比(OR)= 1.071,95%置信区间(CI)(1.006,1.139),P = 0.030]、CHD[OR = 3.185,95%CI(1.201,8.447),P = 0.020]、心力衰竭[OR = 3.028,95%CI(1.041,8.810),P = 0.042]、WBC [OR = 1.095,95%CI(1.003,1.196),P = 0.042]、乳酸[OR = 1.095,95%CI(1.014,1.183),P = 0.021]、hs-cTnT[OR = 1.629,95%CI(1.098,2.418),P = 0.015]、APACHEⅡ评分[OR = 1.092,95%CI(1.003,1.188),P = 0.043]为影响SCM发病的独立危险因素。ROC曲线分析显示,年龄[曲线下面积(AUC)= 0.767,95%CI(0.694,0.840),P<0.001]、WBC[AUC = 0.757,95%CI(0.689,0.824),P<0.001]、乳酸[AUC = 0.690,95%CI(0.603,0.778),P<0.001]、hs-cTnT[AUC = 0.772,95%CI(0.071,0.843),P< 0.001]及APACHEⅡ评分[AUC = 0.792,95%CI(0.727,0.856),P<0.001]均对SCM的发生有一定预测价值。

结论

SCM在脓毒症或脓毒性休克患者中发病率较高,年龄、CHD、心力衰竭、WBC、乳酸、hs-cTnT、APACHEⅡ评分均为脓毒症或脓毒性休克患者SCM发病的独立危险因素。

Objective

To investigate the incidence and related risk factors of septic cardiomyopathy (SCM).

Methods

A total of 228 patients with sepsis or septic shock admitted to ICU of Shaanxi Provincial People's Hospital from January 2019 to April 2021 were retrospectively analyzed in this study. All patients were divided into the SCM group (42 cases) and the non-SCM group (186 cases) according to the occurrence of SCM. The clinical indicators were recorded and compared between the two groups. The multivariate Logistic regression analysis was used to analyze the risk factors associated with the development of SCM. Meanwhile, the receiver operating characteristic (ROC) curve was drawn to evaluate the predictive value of each indicator on SCM occurrence.

Results

The incidence of SCM in patients with sepsis or septic shock was 18.4% (42/228). In the SCM group, the patients were older (t = 5.309, P<0.001), the incidences of coronary atherosclerotic heart disease (CHD), atrial fibrillation, heart failure and chronic kidney failure were higher (χ2 = 5.090, P = 0.024; χ2 = 6.399, P = 0.011; χ2 = 31.848, P< 0.001; χ2 = 3.979, P = 0.046), and the levels of white blood cell (WBC), lactate, creatine kinase isoenzymes-MB, high-sensitivity cardiac troponin T (hs-cTnT) and acute physiology and chronic health evaluation (APACHE) Ⅱ score (t = 4.560, P<0.001; Z = 3.855, P<0.001; Z = 2.075, P = 0.038; Z = 5.513, P<0.001; Z = 5.913, P<0.001) were all much higher than those in the non-SCM group. The multivariate Logistic regression analysis showed that the age [odds ratio (OR) = 1.071, 95% confidence interval (CI) (1.006, 1.139), P = 0.030], CHD [OR = 3.185, 95%CI (1.201, 8.447), P = 0.020], heart failure [OR = 3.028, 95%CI (1.041, 8.810), P = 0.042], WBC [OR = 1.095, 95%CI (1.003, 1.196), P = 0.042], lactate [OR = 1.095, 95%CI (1.014, 1.183), P = 0.021], hs-cTnT [OR = 1.629, 95%CI (1.098, 2.418), P = 0.015], APACHEⅡ score [OR = 1.092, 95%CI (1.003, 1.188), P = 0.043] were independent risk factors for the incidence of SCM. The ROC curve analysis showed that the age [area under the curve (AUC) = 0.767, 95%CI (0.694, 0.840), P<0.001], WBC [AUC = 0.757, 95%CI (0.689, 0.824), P<0.001], lactate [AUC = 0.690, 95%CI (0.603, 0.778), P<0.001], hs-cTnT [AUC = 0.772, 95%CI (0.071, 0.843), P<0.001] and APACHEⅡ score [AUC = 0.792, 95%CI (0.727, 0.856), P<0.001] all had certain predictive values for SCM occurrence.

Conclusions

The incidence of SCM of patients with sepsis or septic shock is relatively high. Age, CHD, heart failure, WBC, lactate, hs-cTnT and APACHEⅡ score are independent risk factors of SCM occurrence.

表1 两组脓毒症及脓毒性休克患者临床资料的比较( ± s
组别 例数 年龄(岁) 男/女(例) 体质量(kg) 高血压[例(%)] CHD[例(%)] 心房颤动[例(%)] 心力衰竭[例(%)] 糖尿病[例(%)] 脑梗死[例(%)] 慢性肾衰竭[例(%)] 恶性肿瘤[例(%)]
SCM组 42 78 ± 8 27/15 64 ± 7 11(26.2) 14(33.3) 13(31.0) 16(38.1) 7(16.7) 5(11.9) 8(19.0) 0(0)
非SCM组 186 67 ± 13 93/93 66 ± 10 55(29.6) 33(17.7) 27(14.5) 12(6.5) 39(21.0) 28(15.1) 14(7.5) 9(4.8)
t/χ2/Z   5.309 2.805 1.439 0.190 5.090 6.399 31.848 0.394 0.274 3.979 1.032
P   <0.001 0.094 0.219 0.663 0.024 0.011 <0.001 0.530 0.600 0.046 0.310
组别 例数 最高体温(℃) 心率(次/min) 呼吸频率(次/min) MAP(mmHg) WBC(×109/L) N(%) RBC(×1012/L) 血红蛋白(g/L) PLT(×109/L) 降钙素原[μg/L,MP25P75)]
SCM组 42 37.6 ± 1.1 102 ± 35 24 ± 6 74 ± 17 21 ± 4 0.90 ± 0.05 3.2 ± 0.5 94 ± 15 104 ± 63 18(4,56)
非SCM组 186 37.9 ± 1.2 105 ± 33 25 ± 6 78 ± 19 17 ± 6 0.88 ± 0.07 3.1 ± 0.6 94 ± 21 113 ± 69 12(4,45)
t/χ2/Z   1.870 0.466 0.423 1.274 4.560 1.468 0.828 0.097 0.776 0.837
P   0.063 0.642 0.672 0.204 <0.001 0.144 0.411 0.923 0.438 0.403
组别 例数 hsCRP[mg/L,MP25P75)] 乳酸[mmol/L,MP25P75)] CK-MB[μg/L,MP25P75)] hs-cTnT[μg/L,MP25P75)] 肌红蛋白[μg/L,MP25P75)] APACHEⅡ评分[分,MP25P75)] SOFA评分[分,MP25P75)]
SCM组 42 1 042(792,1 631) 9.4(6.0,13.3) 42(18,65) 0.40(0.20,0.80) 120(27,657) 30(26,33) 12(10,16)
非SCM组 186 1 064(842,1 302) 4.5(2.3,8.8) 22(5,64) 0.11(0.03,0.28) 107(36,427) 21(17,27) 12(9,18)
t/χ2/Z   0.544 3.855 2.075 5.513 0.141 5.913 0.382
P   0.586 <0.001 0.038 <0.001 0.888 <0.001 0.702
表2 影响脓毒症及脓毒性休克患者发生SCM的相关危险因素分析
图1 各指标预测脓毒症及脓毒性休克患者发生SCM的ROC曲线分析注:SCM.脓毒症心肌病;ROC.受试者工作特征;WBC.白细胞;hs-cTnT.高敏心肌肌钙蛋白T;APACHE.急性病生理学和长期健康评价
表3 不同指标预测脓毒症及脓毒性休克患者发生SCM的ROC曲线分析
1
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 801-810.
2
Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock[J]. Ann Intern Med, 1984, 100 (4): 483-490.
3
李玉玲,康健,冯卓. 脓毒症心功能障碍的研究进展[J/CD]. 中华危重症医学杂志(电子版)201710(3):200-206.
4
Sato R, Nasu M. A review of sepsis-induced cardiomyopathy[J]. J Intensive Care, 2015 (3): 48.
5
Jardin F, Brun-Ney D, Auvert B, et al. Sepsis-related cardiogenic shock[J]. Crit Care Med, 1990, 18 (10): 1055-1060.
6
Bouhemad B, Nicolas-Robin A, Arbelot C, et al. Acute left ventricular dilatation and shock-induced myocardial dysfunction[J]. Crit Care Med, 2009, 37 (2): 441-447.
7
Vieillard-Baron A, Caille V, Charron C, et al. Actual incidence of global left ventricular hypokinesia in adult septic shock[J]. Crit Care Med, 2008, 36 (6): 1701-1706.
8
Etchecopar-Chevreuil C, Francois B, Clavel M, et al. Cardiac morphological and functional changes during early septic shock: a transesophageal echocardiographic study[J]. Intensive Care Med, 2008, 34 (2): 250-256.
9
Kong W, Kang K, Gao Y, et al. Dexmedetomidine alleviates LPS-induced septic cardiomyopathy via the cholinergic anti-inflammatory pathway in mice[J]. Am J Transl Res, 2017, 9 (11): 5040-5047.
10
Cimolai MC, Alvarez S, Bode C, et al. Mitochondrial mechanisms in septic cardiomyopathy[J]. Int J Mol Sci, 2015, 16 (8): 17763-17778.
11
Hobai IA, Edgecomb J, LaBarge K, et al. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy[J]. Shock, 2015, 43 (1): 3-15.
12
Kalbitz M, Grailer JJ, Fattahi F, et al. Role of extracellular histones in the cardiomyopathy of sepsis[J]. FASEB J, 2015, 29 (5): 2185-2193.
13
Turillazzi E, Fineschi V, Palmiere C, et al. Cardiovascular involvement in sepsis[J]. Mediators Inflamm, 2016: 8584793.
14
Kakihana Y, Ito T, Nakahara M, et al. Sepsis-induced myocardial dysfunction: pathophysiology and management[J]. J Intensive Care, 2016 (4): 22.
15
Ehrman RR, Sullivan AN, Favot MJ, et al. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature[J]. Crit Care, 2018, 22 (1): 112.
16
Zheng Y, Feng K, Yang H, et al. IL-22/IL-22R1 axis is involved in myocardial injury of a mouse cecal ligation and puncture model[J]. Am J Transl Res, 2019, 11 (2): 998-1008.
17
Phua J, Koay ES, Lee KH. Lactate, procalcitonin, and amino-terminal pro-B-type natriuretic peptide versus cytokine measurements and clinical severity scores for prognostication in septic shock[J]. Shock, 2008, 29 (3): 328-333.
18
伊孙邦,胡雨峰,林素涵,等. 不同时间段血乳酸水平对脓毒症院内死亡的预测价值比较:基于重症监护医学信息数据库[J/CD]. 中华危重症医学杂志(电子版)202013(1):39-43.
19
Trzeciak S, Dellinger RP, Chansky ME, et al. Serum lactate as a predictor of mortality in patients with infection[J]. Intensive Care Med, 2007, 33 (6): 970-977.
20
Okorie ON, Dellinger P. Lactate: biomarker and potential therapeutic target[J]. Crit Care Clin, 2011, 27 (2): 299-326.
21
简娟,贺志飚,刘继强,等. 胆碱酯酶、乳酸对脓毒症患者病情严重程度及预后的评估价值[J/CD]. 中华危重症医学杂志(电子版)202013(5):339-344.
22
Favory R, Neviere R. Significance and interpretation of elevated troponin in septic patients[J]. Crit Care, 2006, 10 (4): 224.
23
Frencken JF, Donker DW, Spitoni C, et al. Myocardial injury in patients with sepsis and its association with long-term outcome[J]. Circ Cardiovasc Qual Outcomes, 2018, 11 (2): e004040.
24
Schmitz M, Tillmann FP, Paluckaite A, et al. Mortality risk factors in intensive care unit patients with acute kidney injury requiring renal replacement therapy: a retrospective cohort study[J]. Clin Nephrol, 2017, 88 (1): 27-32.
25
Godinjak A, Iglica A, Rama A, et al. Predictive value of SAPS Ⅱ and APACHE Ⅱ scoring systems for patient outcome in a medical intensive care unit[J]. Acta Med Acad, 2016, 45(2): 97-103.
[1] 夏靖涵, 林凤娇, 王胰, 丁戈琦, 张清凤, 张红梅, 谢盛华, 李明星, 尹立雪, 李文华. 二尖瓣空间变化联合左心房应变对肥厚型心肌病合并左心室流出道梗阻的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 585-592.
[2] 王岚, 徐斌胜, 谢乐. 肥厚型心肌病的经胸超声心动图诊断与心电图表现特征[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 593-596.
[3] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[4] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[5] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[6] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[7] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[8] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[9] 周艳, 李盈, 周小兵, 程发辉, 何恒正. 不同类型补片联合Nissen 胃底折叠术修补食管裂孔疝的疗效及复发潜在危险因素[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 528-533.
[10] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[11] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[12] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[13] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[14] 刘志超, 胡风云, 温春丽. 山西省脑卒中危险因素与地域的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 424-433.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要