切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2022, Vol. 15 ›› Issue (03) : 177 -182. doi: 10.3877/cma.j.issn.1674-6880.2022.03.001

论著

脓毒症心肌病发病率及相关危险因素分析
王婵1, 李博玲1, 史晓娟1, 荆程桥1, 董道然1, 宗媛1,()   
  1. 1. 710068 西安,陕西省人民医院重症医学科
  • 收稿日期:2021-10-29 出版日期:2022-06-30
  • 通信作者: 宗媛

Analysis of incidence and related risk factors of septic cardiomyopathy

Chan Wang1, Boling Li1, Xiaojuan Shi1, Chengqiao Jing1, Daoran Dong1, Yuan Zong1,()   

  1. 1. Department of Intensive Care Unit, Shaanxi Provincial People's Hospital, Xi'an 710068, China
  • Received:2021-10-29 Published:2022-06-30
  • Corresponding author: Yuan Zong
引用本文:

王婵, 李博玲, 史晓娟, 荆程桥, 董道然, 宗媛. 脓毒症心肌病发病率及相关危险因素分析[J]. 中华危重症医学杂志(电子版), 2022, 15(03): 177-182.

Chan Wang, Boling Li, Xiaojuan Shi, Chengqiao Jing, Daoran Dong, Yuan Zong. Analysis of incidence and related risk factors of septic cardiomyopathy[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2022, 15(03): 177-182.

目的

研究脓毒症心肌病(SCM)的发病率及其相关危险因素。

方法

回顾性分析2019年1月至2021年4月期间入住陕西省人民医院ICU的228例脓毒症及脓毒性休克患者,根据是否出现SCM分为SCM组(42例)与非SCM组(186例)。对两组患者的临床资料进行比较,采用多因素Logistic回归模型分析SCM发病的相关危险因素。同时,绘制受试者工作特征(ROC)曲线评价各指标对SCM发生的预测价值。

结果

SCM在脓毒症及脓毒性休克患者中的发病率为18.4%(42/228);与非SCM组患者比较,SCM组患者的年龄更高(t = 5.309,P<0.001),冠状动脉粥样硬化性心脏病(CHD)、心房颤动、心力衰竭、慢性肾衰竭占比更高(χ2 = 5.090,P = 0.024;χ2 = 6.399,P = 0.011;χ2 = 31.848,P<0.001;χ2 = 3.979,P = 0.046),白细胞(WBC)、乳酸、肌酸激酶同工酶、高敏心肌肌钙蛋白T(hs-cTnT)及急性病生理学和长期健康评价(APACHE)Ⅱ评分均更高(t = 4.560,P <0.001;Z = 3.855,P<0.001;Z = 2.075,P = 0.038;Z = 5.513,P <0.001;Z = 5.913,P <0.001)。多因素Logistic回归分析显示,年龄[比值比(OR)= 1.071,95%置信区间(CI)(1.006,1.139),P = 0.030]、CHD[OR = 3.185,95%CI(1.201,8.447),P = 0.020]、心力衰竭[OR = 3.028,95%CI(1.041,8.810),P = 0.042]、WBC [OR = 1.095,95%CI(1.003,1.196),P = 0.042]、乳酸[OR = 1.095,95%CI(1.014,1.183),P = 0.021]、hs-cTnT[OR = 1.629,95%CI(1.098,2.418),P = 0.015]、APACHEⅡ评分[OR = 1.092,95%CI(1.003,1.188),P = 0.043]为影响SCM发病的独立危险因素。ROC曲线分析显示,年龄[曲线下面积(AUC)= 0.767,95%CI(0.694,0.840),P<0.001]、WBC[AUC = 0.757,95%CI(0.689,0.824),P<0.001]、乳酸[AUC = 0.690,95%CI(0.603,0.778),P<0.001]、hs-cTnT[AUC = 0.772,95%CI(0.071,0.843),P< 0.001]及APACHEⅡ评分[AUC = 0.792,95%CI(0.727,0.856),P<0.001]均对SCM的发生有一定预测价值。

结论

SCM在脓毒症或脓毒性休克患者中发病率较高,年龄、CHD、心力衰竭、WBC、乳酸、hs-cTnT、APACHEⅡ评分均为脓毒症或脓毒性休克患者SCM发病的独立危险因素。

Objective

To investigate the incidence and related risk factors of septic cardiomyopathy (SCM).

Methods

A total of 228 patients with sepsis or septic shock admitted to ICU of Shaanxi Provincial People's Hospital from January 2019 to April 2021 were retrospectively analyzed in this study. All patients were divided into the SCM group (42 cases) and the non-SCM group (186 cases) according to the occurrence of SCM. The clinical indicators were recorded and compared between the two groups. The multivariate Logistic regression analysis was used to analyze the risk factors associated with the development of SCM. Meanwhile, the receiver operating characteristic (ROC) curve was drawn to evaluate the predictive value of each indicator on SCM occurrence.

Results

The incidence of SCM in patients with sepsis or septic shock was 18.4% (42/228). In the SCM group, the patients were older (t = 5.309, P<0.001), the incidences of coronary atherosclerotic heart disease (CHD), atrial fibrillation, heart failure and chronic kidney failure were higher (χ2 = 5.090, P = 0.024; χ2 = 6.399, P = 0.011; χ2 = 31.848, P< 0.001; χ2 = 3.979, P = 0.046), and the levels of white blood cell (WBC), lactate, creatine kinase isoenzymes-MB, high-sensitivity cardiac troponin T (hs-cTnT) and acute physiology and chronic health evaluation (APACHE) Ⅱ score (t = 4.560, P<0.001; Z = 3.855, P<0.001; Z = 2.075, P = 0.038; Z = 5.513, P<0.001; Z = 5.913, P<0.001) were all much higher than those in the non-SCM group. The multivariate Logistic regression analysis showed that the age [odds ratio (OR) = 1.071, 95% confidence interval (CI) (1.006, 1.139), P = 0.030], CHD [OR = 3.185, 95%CI (1.201, 8.447), P = 0.020], heart failure [OR = 3.028, 95%CI (1.041, 8.810), P = 0.042], WBC [OR = 1.095, 95%CI (1.003, 1.196), P = 0.042], lactate [OR = 1.095, 95%CI (1.014, 1.183), P = 0.021], hs-cTnT [OR = 1.629, 95%CI (1.098, 2.418), P = 0.015], APACHEⅡ score [OR = 1.092, 95%CI (1.003, 1.188), P = 0.043] were independent risk factors for the incidence of SCM. The ROC curve analysis showed that the age [area under the curve (AUC) = 0.767, 95%CI (0.694, 0.840), P<0.001], WBC [AUC = 0.757, 95%CI (0.689, 0.824), P<0.001], lactate [AUC = 0.690, 95%CI (0.603, 0.778), P<0.001], hs-cTnT [AUC = 0.772, 95%CI (0.071, 0.843), P<0.001] and APACHEⅡ score [AUC = 0.792, 95%CI (0.727, 0.856), P<0.001] all had certain predictive values for SCM occurrence.

Conclusions

The incidence of SCM of patients with sepsis or septic shock is relatively high. Age, CHD, heart failure, WBC, lactate, hs-cTnT and APACHEⅡ score are independent risk factors of SCM occurrence.

表1 两组脓毒症及脓毒性休克患者临床资料的比较( ± s
组别 例数 年龄(岁) 男/女(例) 体质量(kg) 高血压[例(%)] CHD[例(%)] 心房颤动[例(%)] 心力衰竭[例(%)] 糖尿病[例(%)] 脑梗死[例(%)] 慢性肾衰竭[例(%)] 恶性肿瘤[例(%)]
SCM组 42 78 ± 8 27/15 64 ± 7 11(26.2) 14(33.3) 13(31.0) 16(38.1) 7(16.7) 5(11.9) 8(19.0) 0(0)
非SCM组 186 67 ± 13 93/93 66 ± 10 55(29.6) 33(17.7) 27(14.5) 12(6.5) 39(21.0) 28(15.1) 14(7.5) 9(4.8)
t/χ2/Z   5.309 2.805 1.439 0.190 5.090 6.399 31.848 0.394 0.274 3.979 1.032
P   <0.001 0.094 0.219 0.663 0.024 0.011 <0.001 0.530 0.600 0.046 0.310
组别 例数 最高体温(℃) 心率(次/min) 呼吸频率(次/min) MAP(mmHg) WBC(×109/L) N(%) RBC(×1012/L) 血红蛋白(g/L) PLT(×109/L) 降钙素原[μg/L,MP25P75)]
SCM组 42 37.6 ± 1.1 102 ± 35 24 ± 6 74 ± 17 21 ± 4 0.90 ± 0.05 3.2 ± 0.5 94 ± 15 104 ± 63 18(4,56)
非SCM组 186 37.9 ± 1.2 105 ± 33 25 ± 6 78 ± 19 17 ± 6 0.88 ± 0.07 3.1 ± 0.6 94 ± 21 113 ± 69 12(4,45)
t/χ2/Z   1.870 0.466 0.423 1.274 4.560 1.468 0.828 0.097 0.776 0.837
P   0.063 0.642 0.672 0.204 <0.001 0.144 0.411 0.923 0.438 0.403
组别 例数 hsCRP[mg/L,MP25P75)] 乳酸[mmol/L,MP25P75)] CK-MB[μg/L,MP25P75)] hs-cTnT[μg/L,MP25P75)] 肌红蛋白[μg/L,MP25P75)] APACHEⅡ评分[分,MP25P75)] SOFA评分[分,MP25P75)]
SCM组 42 1 042(792,1 631) 9.4(6.0,13.3) 42(18,65) 0.40(0.20,0.80) 120(27,657) 30(26,33) 12(10,16)
非SCM组 186 1 064(842,1 302) 4.5(2.3,8.8) 22(5,64) 0.11(0.03,0.28) 107(36,427) 21(17,27) 12(9,18)
t/χ2/Z   0.544 3.855 2.075 5.513 0.141 5.913 0.382
P   0.586 <0.001 0.038 <0.001 0.888 <0.001 0.702
表2 影响脓毒症及脓毒性休克患者发生SCM的相关危险因素分析
图1 各指标预测脓毒症及脓毒性休克患者发生SCM的ROC曲线分析注:SCM.脓毒症心肌病;ROC.受试者工作特征;WBC.白细胞;hs-cTnT.高敏心肌肌钙蛋白T;APACHE.急性病生理学和长期健康评价
表3 不同指标预测脓毒症及脓毒性休克患者发生SCM的ROC曲线分析
1
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 801-810.
2
Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock[J]. Ann Intern Med, 1984, 100 (4): 483-490.
3
李玉玲,康健,冯卓. 脓毒症心功能障碍的研究进展[J/CD]. 中华危重症医学杂志(电子版)201710(3):200-206.
4
Sato R, Nasu M. A review of sepsis-induced cardiomyopathy[J]. J Intensive Care, 2015 (3): 48.
5
Jardin F, Brun-Ney D, Auvert B, et al. Sepsis-related cardiogenic shock[J]. Crit Care Med, 1990, 18 (10): 1055-1060.
6
Bouhemad B, Nicolas-Robin A, Arbelot C, et al. Acute left ventricular dilatation and shock-induced myocardial dysfunction[J]. Crit Care Med, 2009, 37 (2): 441-447.
7
Vieillard-Baron A, Caille V, Charron C, et al. Actual incidence of global left ventricular hypokinesia in adult septic shock[J]. Crit Care Med, 2008, 36 (6): 1701-1706.
8
Etchecopar-Chevreuil C, Francois B, Clavel M, et al. Cardiac morphological and functional changes during early septic shock: a transesophageal echocardiographic study[J]. Intensive Care Med, 2008, 34 (2): 250-256.
9
Kong W, Kang K, Gao Y, et al. Dexmedetomidine alleviates LPS-induced septic cardiomyopathy via the cholinergic anti-inflammatory pathway in mice[J]. Am J Transl Res, 2017, 9 (11): 5040-5047.
10
Cimolai MC, Alvarez S, Bode C, et al. Mitochondrial mechanisms in septic cardiomyopathy[J]. Int J Mol Sci, 2015, 16 (8): 17763-17778.
11
Hobai IA, Edgecomb J, LaBarge K, et al. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy[J]. Shock, 2015, 43 (1): 3-15.
12
Kalbitz M, Grailer JJ, Fattahi F, et al. Role of extracellular histones in the cardiomyopathy of sepsis[J]. FASEB J, 2015, 29 (5): 2185-2193.
13
Turillazzi E, Fineschi V, Palmiere C, et al. Cardiovascular involvement in sepsis[J]. Mediators Inflamm, 2016: 8584793.
14
Kakihana Y, Ito T, Nakahara M, et al. Sepsis-induced myocardial dysfunction: pathophysiology and management[J]. J Intensive Care, 2016 (4): 22.
15
Ehrman RR, Sullivan AN, Favot MJ, et al. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature[J]. Crit Care, 2018, 22 (1): 112.
16
Zheng Y, Feng K, Yang H, et al. IL-22/IL-22R1 axis is involved in myocardial injury of a mouse cecal ligation and puncture model[J]. Am J Transl Res, 2019, 11 (2): 998-1008.
17
Phua J, Koay ES, Lee KH. Lactate, procalcitonin, and amino-terminal pro-B-type natriuretic peptide versus cytokine measurements and clinical severity scores for prognostication in septic shock[J]. Shock, 2008, 29 (3): 328-333.
18
伊孙邦,胡雨峰,林素涵,等. 不同时间段血乳酸水平对脓毒症院内死亡的预测价值比较:基于重症监护医学信息数据库[J/CD]. 中华危重症医学杂志(电子版)202013(1):39-43.
19
Trzeciak S, Dellinger RP, Chansky ME, et al. Serum lactate as a predictor of mortality in patients with infection[J]. Intensive Care Med, 2007, 33 (6): 970-977.
20
Okorie ON, Dellinger P. Lactate: biomarker and potential therapeutic target[J]. Crit Care Clin, 2011, 27 (2): 299-326.
21
简娟,贺志飚,刘继强,等. 胆碱酯酶、乳酸对脓毒症患者病情严重程度及预后的评估价值[J/CD]. 中华危重症医学杂志(电子版)202013(5):339-344.
22
Favory R, Neviere R. Significance and interpretation of elevated troponin in septic patients[J]. Crit Care, 2006, 10 (4): 224.
23
Frencken JF, Donker DW, Spitoni C, et al. Myocardial injury in patients with sepsis and its association with long-term outcome[J]. Circ Cardiovasc Qual Outcomes, 2018, 11 (2): e004040.
24
Schmitz M, Tillmann FP, Paluckaite A, et al. Mortality risk factors in intensive care unit patients with acute kidney injury requiring renal replacement therapy: a retrospective cohort study[J]. Clin Nephrol, 2017, 88 (1): 27-32.
25
Godinjak A, Iglica A, Rama A, et al. Predictive value of SAPS Ⅱ and APACHE Ⅱ scoring systems for patient outcome in a medical intensive care unit[J]. Acta Med Acad, 2016, 45(2): 97-103.
[1] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[2] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[3] 黄应雄, 叶子, 蒋鹏, 詹红, 姚陈, 崔冀. 急性肠系膜静脉血栓形成致透壁性肠坏死的临床危险因素分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 413-421.
[4] 张再博, 王冰雨, 焦志凯, 檀碧波. 胃癌术后下肢深静脉血栓危险因素的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 475-480.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 吴方园, 孙霞, 林昌锋, 张震生. HBV相关肝硬化合并急性上消化道出血的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 45-47.
[7] 陈旭渊, 罗仕云, 李文忠, 李毅. 腺源性肛瘘经手术治疗后创面愈合困难的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 82-85.
[8] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[9] 莫闲, 杨闯. 肝硬化患者并发门静脉血栓危险因素的Meta分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 678-683.
[10] 毛永欢, 仝瀚文, 缪骥, 王行舟, 沈晓菲, 喻春钊. 造口旁疝危险因素预测模型构建[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 682-687.
[11] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[12] 陆猛桂, 黄斌, 李秋林, 何媛梅. 蜂蛰伤患者发生多器官功能障碍综合征的危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1010-1015.
[13] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[14] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[15] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
阅读次数
全文


摘要