1 |
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464 (7285): 59-65.
|
2 |
Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota[J]. Nature, 2016, 533 (7602): 255-259.
|
3 |
Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system[J]. Nature, 2011, 474 (7351): 327-336.
|
4 |
Bassetti M, Poulakou G, Ruppe E, et al. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach[J]. Intensive Care Med, 2017, 43 (10): 1464-1475.
|
5 |
Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis[J]. Lancet Gastroenterol Hepatol, 2017, 2 (2): 135-143.
|
6 |
Haak BW, Prescott HC, Wiersinga WJ. Therapeutic potential of the gut microbiota in the prevention and treatment of sepsis[J]. Front Immunol, 2018 (9): 2042.
|
7 |
Rabb H, Pluznick J, Noel S. The microbiome and acute kidney injury[J]. Nephron, 2018, 140 (2): 120-123.
|
8 |
Nakade Y, Iwata Y, Furuichi K, et al. Gut microbiota-derived D-serine protects against acute kidney injury[J]. JCI Insight, 2018, 3 (20): e97957.
|
9 |
Gong J, Noel S, Pluznick JL, et al. Gut microbiota-kidney cross-talk in acute kidney injury[J]. Semin Nephrol, 2019, 39 (1): 107-116.
|
10 |
Meng M, Klingensmith NJ, Coopersmith CM. New insights into the gut as the driver of critical illness and organ failure[J]. Curr Opin Crit Care, 2017, 23 (2): 143-148.
|
11 |
Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness[J]. Crit Care Clin, 2016, 32 (2): 203-212.
|
12 |
Maldonado-Gómez MX, Martínez I, Bottacini F, et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome[J]. Cell Host Microbe, 2016, 20 (4): 515-526.
|
13 |
Dicks LMT, Mikkelsen LS, Brandsborg E, et al. Clostridium difficile, the difficult "Kloster" fuelled by antibiotics[J]. Curr Microbiol, 2019, 76 (6): 774-782.
|
14 |
You JS, Yong JH, Kim GH, et al. Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine[J]. Microbiome, 2019, 7 (1): 132.
|
15 |
Kitsios GD, Morowitz MJ, Dickson RP, et al. Dysbiosis in the intensive care unit: microbiome science coming to the bedside[J]. J Crit Care, 2017 (38): 84-91.
|
16 |
Kang JD, Myers CJ, Harris SC, et al. Bile acid 7α-dehydroxylating gut bacteria secrete antibiotics that inhibit Clostridium difficile: role of secondary bile acids[J]. Cell Chem Biol, 2019, 26 (1): 27-34.e4.
|
17 |
Kelly CP, Chong Nguyen C, Palmieri LJ, et al. Saccharomyces boulardii CNCM I-745 modulates the fecal bile acids metabolism during antimicrobial therapy in healthy volunteers[J]. Front Microbiol, 2019 (10): 336-336.
|
18 |
Malhi H, Camilleri M. Modulating bile acid pathways and TGR5 receptors for treating liver and GI diseases[J]. Curr Opin Pharmacol, 2017 (37): 80-86.
|
19 |
Cammarota G, Ianiro G, Kelly CR, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice[J]. Gut, 2019, 68 (12): 2111-2121.
|
20 |
Khan MY, Dirweesh A, Khurshid T, et al. Comparing fecal microbiota transplantation to standard-of-care treatment for recurrent Clostridium difficile infection: a systematic review and meta-analysis[J]. Eur J Gastroenterol Hepatol, 2018, 30 (11): 1309-1317.
|
21 |
Vaughn BP, Rank KM, Khoruts A. Fecal microbiota transplantation: current status in treatment of GI and liver disease[J]. Clin Gastroenterol Hepatol, 2019, 17 (2): 353-361.
|
22 |
Ianiro G, Masucci L, Quaranta G, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy plus vancomycin for the treatment of severe refractory Clostridium difficile infection-single versus multiple infusions[J]. Aliment Pharmacol Ther, 2018, 48 (2): 152-159.
|
23 |
D'haens GR, Jobin C. Fecal microbial transplantation for diseases beyond recurrent Clostridium difficile infection[J]. Gastroenterology, 2019, 157 (3): 624-636.
|
24 |
Arbel LT, Hsu E, Mcnally K. Cost-effectiveness of fecal microbiota transplantation in the treatment of recurrent Clostridium difficile infection: a literature review[J]. Cureus, 2017, 9 (8): e1599.
|
25 |
Kellingray L, Gall GL, Defernez M, et al. Microbial taxonomic and metabolic alterations during faecal microbiota transplantation to treat Clostridium difficile infection[J]. J Infect, 2018, 77 (2): 107-118.
|
26 |
Chung LK, Raffatellu M. G.I. pros: antimicrobial defense in the gastrointestinal tract[J]. Semin Cell Dev Biol, 2019 (88): 129-137.
|
27 |
Kintses B, Méhi O, Ari E, et al. Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota[J]. Nat Microbiol, 2019, 4 (3): 447-458.
|
28 |
Chen B, Ni X, Sun R, et al. Commensal bacteria-dependent CD8αβ+ T cells in the intestinal epithelium produce antimicrobial peptides[J]. Front Immunol, 2018 (9): 1065.
|
29 |
De Breij A, Riool M, Cordfunke RA, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms[J]. Sci Transl Med, 2018, 10 (423): eaan4044.
|
30 |
Tucker AT, Leonard SP, Dubois CD, et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries[J]. Cell, 2018, 172 (3): 618-628.e13.
|
31 |
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nat Rev Gastroenterol Hepatol, 2017, 14 (8): 491-502.
|
32 |
Lewis BB, Pamer EG. Microbiota-based therapies for Clostridium difficile and antibiotic-resistant enteric infections[J]. Annu Rev Microbiol, 2017 (71): 157-178.
|
33 |
Antunes KH, Fachi JL, De Paula R, et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response[J]. Nat Commun, 2019, 10 (1): 3273.
|
34 |
Hryckowian AJ, Van Treuren W, Smits SA, et al. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model[J]. Nat Microbiol, 2018, 3 (6): 662-669.
|
35 |
Zhao Y, Chen F, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3[J]. Mucosal Immunology, 2018, 11 (3): 752-762.
|
36 |
Wang A, Cai D, Zhang H, et al. Using herbal medicine to target the "microbiota-metabolism-immunity" axis as possible therapy for cardiovascular disease[J]. Pharmacol Res, 2019 (142): 205-222.
|
37 |
Zhou SS, Xu J, Zhu H, et al. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction[J]. Sci Rep, 2016 (6): 22474.
|
38 |
MacVane SH. Antimicrobial resistance in the intensive care unit: a focus on gram-negative bacterial infections[J]. J Intensive Care Med, 2017, 32 (1): 25-37.
|
39 |
Manian FA. IDSA guidelines for the diagnosis and management of intravascular catheter-related bloodstream infection[J]. Clin Infect Dis, 2009, 49 (11): 1770-1772.
|