切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (04) : 323 -326. doi: 10.3877/cma.j.issn.1674-6880.2021.04.012

综述

菌群微生态在ICU多重耐药菌防治中的研究进展
王安璐1, 肖宁1, 易亮1, 李洁1, 茹江丽1, 徐浩2, 杨志旭1,()   
  1. 1. 100091 北京,中国中医科学院西苑医院重症医学科
    2. 100091 北京,中国中医科学院西苑医院心血管科
  • 收稿日期:2021-03-17 出版日期:2021-08-31
  • 通信作者: 杨志旭
  • 基金资助:
    中国中医科学院中央级公益性科研院所基本科研业务费专项基金项目(ZZ13-YQ-014)
  • Received:2021-03-17 Published:2021-08-31
引用本文:

王安璐, 肖宁, 易亮, 李洁, 茹江丽, 徐浩, 杨志旭. 菌群微生态在ICU多重耐药菌防治中的研究进展[J]. 中华危重症医学杂志(电子版), 2021, 14(04): 323-326.

1
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464 (7285): 59-65.
2
Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota[J]. Nature, 2016, 533 (7602): 255-259.
3
Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system[J]. Nature, 2011, 474 (7351): 327-336.
4
Bassetti M, Poulakou G, Ruppe E, et al. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach[J]. Intensive Care Med, 2017, 43 (10): 1464-1475.
5
Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis[J]. Lancet Gastroenterol Hepatol, 2017, 2 (2): 135-143.
6
Haak BW, Prescott HC, Wiersinga WJ. Therapeutic potential of the gut microbiota in the prevention and treatment of sepsis[J]. Front Immunol, 2018 (9): 2042.
7
Rabb H, Pluznick J, Noel S. The microbiome and acute kidney injury[J]. Nephron, 2018, 140 (2): 120-123.
8
Nakade Y, Iwata Y, Furuichi K, et al. Gut microbiota-derived D-serine protects against acute kidney injury[J]. JCI Insight, 2018, 3 (20): e97957.
9
Gong J, Noel S, Pluznick JL, et al. Gut microbiota-kidney cross-talk in acute kidney injury[J]. Semin Nephrol, 2019, 39 (1): 107-116.
10
Meng M, Klingensmith NJ, Coopersmith CM. New insights into the gut as the driver of critical illness and organ failure[J]. Curr Opin Crit Care, 2017, 23 (2): 143-148.
11
Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness[J]. Crit Care Clin, 2016, 32 (2): 203-212.
12
Maldonado-Gómez MX, Martínez I, Bottacini F, et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome[J]. Cell Host Microbe, 2016, 20 (4): 515-526.
13
Dicks LMT, Mikkelsen LS, Brandsborg E, et al. Clostridium difficile, the difficult "Kloster" fuelled by antibiotics[J]. Curr Microbiol, 2019, 76 (6): 774-782.
14
You JS, Yong JH, Kim GH, et al. Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine[J]. Microbiome, 2019, 7 (1): 132.
15
Kitsios GD, Morowitz MJ, Dickson RP, et al. Dysbiosis in the intensive care unit: microbiome science coming to the bedside[J]. J Crit Care, 2017 (38): 84-91.
16
Kang JD, Myers CJ, Harris SC, et al. Bile acid 7α-dehydroxylating gut bacteria secrete antibiotics that inhibit Clostridium difficile: role of secondary bile acids[J]. Cell Chem Biol, 2019, 26 (1): 27-34.e4.
17
Kelly CP, Chong Nguyen C, Palmieri LJ, et al. Saccharomyces boulardii CNCM I-745 modulates the fecal bile acids metabolism during antimicrobial therapy in healthy volunteers[J]. Front Microbiol, 2019 (10): 336-336.
18
Malhi H, Camilleri M. Modulating bile acid pathways and TGR5 receptors for treating liver and GI diseases[J]. Curr Opin Pharmacol, 2017 (37): 80-86.
19
Cammarota G, Ianiro G, Kelly CR, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice[J]. Gut, 2019, 68 (12): 2111-2121.
20
Khan MY, Dirweesh A, Khurshid T, et al. Comparing fecal microbiota transplantation to standard-of-care treatment for recurrent Clostridium difficile infection: a systematic review and meta-analysis[J]. Eur J Gastroenterol Hepatol, 2018, 30 (11): 1309-1317.
21
Vaughn BP, Rank KM, Khoruts A. Fecal microbiota transplantation: current status in treatment of GI and liver disease[J]. Clin Gastroenterol Hepatol, 2019, 17 (2): 353-361.
22
Ianiro G, Masucci L, Quaranta G, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy plus vancomycin for the treatment of severe refractory Clostridium difficile infection-single versus multiple infusions[J]. Aliment Pharmacol Ther, 2018, 48 (2): 152-159.
23
D'haens GR, Jobin C. Fecal microbial transplantation for diseases beyond recurrent Clostridium difficile infection[J]. Gastroenterology, 2019, 157 (3): 624-636.
24
Arbel LT, Hsu E, Mcnally K. Cost-effectiveness of fecal microbiota transplantation in the treatment of recurrent Clostridium difficile infection: a literature review[J]. Cureus, 2017, 9 (8): e1599.
25
Kellingray L, Gall GL, Defernez M, et al. Microbial taxonomic and metabolic alterations during faecal microbiota transplantation to treat Clostridium difficile infection[J]. J Infect, 2018, 77 (2): 107-118.
26
Chung LK, Raffatellu M. G.I. pros: antimicrobial defense in the gastrointestinal tract[J]. Semin Cell Dev Biol, 2019 (88): 129-137.
27
Kintses B, Méhi O, Ari E, et al. Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota[J]. Nat Microbiol, 2019, 4 (3): 447-458.
28
Chen B, Ni X, Sun R, et al. Commensal bacteria-dependent CD8αβ+ T cells in the intestinal epithelium produce antimicrobial peptides[J]. Front Immunol, 2018 (9): 1065.
29
De Breij A, Riool M, Cordfunke RA, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms[J]. Sci Transl Med, 2018, 10 (423): eaan4044.
30
Tucker AT, Leonard SP, Dubois CD, et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries[J]. Cell, 2018, 172 (3): 618-628.e13.
31
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nat Rev Gastroenterol Hepatol, 2017, 14 (8): 491-502.
32
Lewis BB, Pamer EG. Microbiota-based therapies for Clostridium difficile and antibiotic-resistant enteric infections[J]. Annu Rev Microbiol, 2017 (71): 157-178.
33
Antunes KH, Fachi JL, De Paula R, et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response[J]. Nat Commun, 2019, 10 (1): 3273.
34
Hryckowian AJ, Van Treuren W, Smits SA, et al. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model[J]. Nat Microbiol, 2018, 3 (6): 662-669.
35
Zhao Y, Chen F, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3[J]. Mucosal Immunology, 2018, 11 (3): 752-762.
36
Wang A, Cai D, Zhang H, et al. Using herbal medicine to target the "microbiota-metabolism-immunity" axis as possible therapy for cardiovascular disease[J]. Pharmacol Res, 2019 (142): 205-222.
37
Zhou SS, Xu J, Zhu H, et al. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction[J]. Sci Rep, 2016 (6): 22474.
38
MacVane SH. Antimicrobial resistance in the intensive care unit: a focus on gram-negative bacterial infections[J]. J Intensive Care Med, 2017, 32 (1): 25-37.
39
Manian FA. IDSA guidelines for the diagnosis and management of intravascular catheter-related bloodstream infection[J]. Clin Infect Dis, 2009, 49 (11): 1770-1772.
No related articles found!
阅读次数
全文


摘要