切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2020, Vol. 13 ›› Issue (04) : 270 -276. doi: 10.3877/cma.j.issn.1674-6880.2020.04.006

所属专题: 总编推荐 文献

论著

多重荧光PCR-熔解曲线法同时检测常见病原真菌方法学的建立及诊断价值
朱芳1, 朱以军2,(), 胡益飞2, 倪红英3, 单小云2   
  1. 1. 321000 浙江金华,金华市中心医院病理科
    2. 321000 浙江金华,金华市中心医院检验科
    3. 321000 浙江金华,金华市中心医院重症医学科
  • 收稿日期:2020-02-25 出版日期:2020-08-01
  • 通信作者: 朱以军
  • 基金资助:
    浙江省公益技术应用研究分析测试计划项目(2017C37050); 金华市中心医院中青年科研启动基金项目(JY2016-2-03)

Establishment and diagnostic value of multiplex fluorescent PCR-melting curve method for detection of common pathogenic fungi

Fang Zhu1, Yijun Zhu2,(), Yifei Hu2, Hongying Ni3, Xiaoyun Shan2   

  1. 1. Department of Pathology, Jinhua Municipal Central Hospital, Jinhua 321000, China
    2. Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Jinhua 321000, China
    3. Department of Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua 321000, China
  • Received:2020-02-25 Published:2020-08-01
  • Corresponding author: Yijun Zhu
  • About author:
    Corresponding author: Zhu Yijun, Email:
引用本文:

朱芳, 朱以军, 胡益飞, 倪红英, 单小云. 多重荧光PCR-熔解曲线法同时检测常见病原真菌方法学的建立及诊断价值[J]. 中华危重症医学杂志(电子版), 2020, 13(04): 270-276.

Fang Zhu, Yijun Zhu, Yifei Hu, Hongying Ni, Xiaoyun Shan. Establishment and diagnostic value of multiplex fluorescent PCR-melting curve method for detection of common pathogenic fungi[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2020, 13(04): 270-276.

目的

建立多重荧光PCR-熔解曲线法,并评价其同时检测假丝酵母菌、曲霉菌及新型隐球菌的诊断价值。

方法

建立多重荧光PCR-熔解曲线法并对其检测体系进行优化。收集临床高度怀疑为侵袭性真菌感染(IFI)的各类临床样本179例,其中血液65例、深部痰液35例、尿液30例、脑脊液18例、胸腹水12例、肺泡灌洗液10例、新鲜肺组织9例。通过敏感性、特异性、重复性实验验证多重荧光PCR-熔解曲线法的检测性能,并应用受试者工作特征(ROC)曲线评价该方法的诊断效能。

结果

建立的多重荧光PCR-熔解曲线法可同时检测8种常见病原真菌,包括4种假丝酵母菌(白假丝酵母菌、热带假丝酵母菌、光滑假丝酵母菌、克柔假丝酵母菌)、3种曲霉菌(烟曲霉、黄曲霉、黑曲霉)和新型隐球菌。其最低检测限为1 × 104 cfu/mL,且常见细菌无扩增反应,重复性实验解链温度波动小于0.5 ℃。179例临床样本中,以培养法、镜检法、病理诊断等"金标准"方法诊断IFI阳性为112例,多重荧光PCR-熔解曲线法检测阳性为96例。多重荧光PCR-熔解曲线法同时检测假丝酵母菌、曲霉菌及新型隐球菌的敏感度为0.857,特异度为0.970,阳性预测值为0.980,阴性预测值为0.802,ROC曲线下面积为0.914,95%置信区间为0.868 ~ 0.959,P < 0.001。

结论

本研究建立的多重荧光PCR-熔解曲线法可快速、准确、高通量同时检测假丝酵母菌、曲霉菌及新型隐球菌,对于IFI的早期诊断具有重要意义。

Objective

To establish a multiplex fluorescent PCR-melting curve method for simultaneous detection of Candida, Aspergillus and Cryptococcus, and to evaluate its diagnostic value.

Methods

A multiplex fluorescent PCR-melting curve method was established and its detection system was optimized. Totally 179 clinical specimens including 65 blood specimens, 35 deep sputum specimens, 30 urine specimens, 18 cerebrospinal fluid specimens, 12 hydrothorax and ascites specimens, 10 alveolar lavage fluid specimens and 9 fresh lung tissue specimens for highly suspected invasive fungal infection (IFI) were enrolled in this study. The sensitivity, specificity and repeatability experiments were used to verify the detection performance of this method, and the receiver operating characteristic (ROC) curve was used to evaluate its diagnostic efficiency.

Results

The multiplex fluorescent PCR-melting curve method could simultaneously detect 8 common pathogenic fungi, including 4 kinds of Candida (Candida albicans, Candida tropicalis, Candida glabrata, Candida krusei), 3 kinds of Aspergillus (Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger) and Cryptococcus neoformans. The minimum detection limit was 1 × 104 cfu/mL. Common bacteria had no amplification reaction, and the melting temperature fluctuation of repetitive experiment was less than 0.5 ℃. Among 179 clinical specimens, 112 were positive by "gold standard" methods such as culture, microscopy and pathological diagnosis, and 96 were positive by the multiplex fluorescent PCR-melting curve method. The sensitivity, specificity, positive predictive value and negative predictive value for simultaneous detection of Candida, Aspergillus and Cryptococcus neoformans by this method were 0.857, 0.970, 0.980 and 0.802, respectively. The area under ROC curve was 0.914, and the 95% confidence interval was 0.868 ~ 0.959 (P < 0.001).

Conclusion

The multiplex fluorescent PCR-melting curve method can detect Candida, Aspergillus and Cryptococcus neoformans rapidly and accurately with high throughput, which is of great significance for the early diagnosis of IFI.

图1 多重荧光PCR Fam探针扩增体系8种真菌的熔解曲线及熔解峰
图2 多重荧光PCR Hex探针扩增体系8种真菌的熔解曲线及熔解峰
图3 多重荧光PCR Cy5探针扩增体系8种真菌的熔解曲线及熔解峰
表1 多重荧光PCR-熔解曲线法3组探针扩增体系中8种真菌标准菌株解链温度参考范围(℃)
表2 多重荧光PCR-熔解曲线法检测结果与传统"金标准"诊断IFI结果汇总表(例)
表3 多重荧光PCR-熔解曲线法检测各种真菌的ROC曲线分析结果
1
Ibánez-Martínez E, Ruiz-Gaitán A, Pemán-García J. Update on the diagnosis of invasive fungal infection[J]. Rev Esp Quimioter, 2017 (30 Suppl 1): 16-21.
2
Honarvar B, Bagheri Lankarani K, Taghavi M, et al. Biomarker-guided antifungal stewardship policies for patients with invasive candidiasis[J]. Curr Med Mycol, 2018, 4 (4): 37-44.
3
Vergidis P, Clancy CJ, Shields RK, et al. Intra-abdominal candidiasis: the importance of early source control and antifungal treatment[J]. PLoS One, 2016, 11 (4): e0153247.
4
戴敏惠,潘频华.重症监护室侵袭性支气管肺曲霉病高危因素研究进展[J/CD].中华危重症医学杂志(电子版),2016,9(5):352-355.
5
Moura S, Cerqueira L, Almeida A. Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach[J]. Eur J Clin Microbiol Infect Dis, 2018, 37 (8): 1393-1403.
6
Prattes J, Flick H, Prüller F, et al. Novel tests for diagnosis of invasive aspergillosis in patients with underlying respiratory diseases[J]. Am J Respir Crit Care Med, 2014, 190 (8): 922-929.
7
Orsi CF, Gennari W, Venturelli C, et al. Performance of 2 commercial real-time polymerase chain reaction assays for the detection of Aspergillus and pneumocystis DNA in bronchoalveolar lavage fluid samples from critical care patients[J]. Diagn Microbiol Infect Dis, 2012, 73 (2): 138-143.
8
中华医学会重症医学分会.重症患者侵袭性真菌感染诊断与治疗指南(2007)[J].中华内科杂志,2007,46(11):960-966.
9
Richardson M, Page I. Role of serological tests in the diagnosis of mold infections[J]. Curr Fungal Infect Rep, 2018, 12 (3): 127-136.
10
Valero C, de la Cruz-Villar L, Zaragoza O, et al. New panfungal real-time PCR assay for diagnosis of invasive fungal infections[J]. J Clin Microbiol, 2016, 54 (12): 2910-2918.
11
Otasevic S, Momcilovic S, Stojanovic NM, et al. Non-culture based assays for the detection of fungal pathogens[J]. J Mycol Med, 2018, 28 (2): 236-248.
12
Nguyen MH, Wissel MC, Shields RK, et al. Performance of Candida real-time polymerase chain reaction, β-D-glucan assay, and blood cultures in the diagnosis of invasive candidiasis[J]. Clin Infect Dis, 2012, 54 (9): 1240-1248.
13
Mekha N, Sugita T, Ikeda R, et al. Real-time PCR assay to detect DNA in sera for the diagnosis of deep-seated trichosporonosis[J]. Microbiol Immunol, 2007, 51 (6): 633-635.
14
Marras SAE, Tyagi S, Antson DO, et al. Color-coded molecular beacons for multiplex PCR screening assays[J]. PLoS One, 2019, 14 (3): e0213906.
15
El-Hajj HH, Marras SA, Tyagi S, et al. Use of sloppy molecular beacon probes for identification of mycobacterial species[J]. J Clin Microbiol, 2009, 47(4): 1190-1198.
16
Chakravorty S, Aladegbami B, Burday M, et al. Rapid universal identification of bacterial pathogens from clinical cultures by using a novel sloppy molecular beacon melting temperature signature technique[J]. J Clin Microbiol, 2010, 48 (1): 258-267.
17
Rezaei F, Haeili M, Fooladi AI, et al. High resolution melting curve analysis for rapid detection of streptomycin and ethambutol resistance in mycobacterium tuberculosis[J]. Maedica (Buchar), 2017, 12 (4): 246-257.
18
Negi SS, Singh P, Bhargava A, et al. Effective pragmatic approach of diagnosis of multidrug-resistant tuberculosis by high-resolution melt curve assay[J]. Int J Mycobacteriol, 2018, 7 (3): 228-235.
19
曹楠楠.利用高分辨熔解曲线分析技术快速检测鉴定四种临床常见侵袭性曲霉菌的方法学研究[D].南方医科大学,2012.
20
Horváth A, Peto Z, Urbán E, et al. A novel, multiplex, real-time PCR-based approach for the detection of the commonly occurring pathogenic fungi and bacteria[J]. BMC Microbiol, 2013 (13): 300.
[1] 温志嘉, 钟浩博, 郑少伟, 黎旭, 王胤, 曾国威, 王圣杰, 孙春汉. 人工关节置换术后假体周围真菌感染研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 60-64.
[2] 郭静, 田国力, 王燕敏, 周卓, 纪伟. 葡萄糖-6-磷酸脱氢酶缺乏症新生儿葡萄糖-6-磷酸脱氢酶及其基因突变的研究[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(06): 672-679.
[3] 贾赤宇, 毛舒婷. 困惑、挑战与希望[J]. 中华损伤与修复杂志(电子版), 2020, 15(06): 423-427.
[4] 宋瑛, 宋江勤, 胡福英, 李华顺, 田友军, 丁妍, 周君阳. 宏基因二代测序协助诊断毛霉菌病一例并文献复习[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(01): 54-59.
[5] 徐仲阳, 吕超亮, 卢公标, 陆继收. 脊柱真菌感染研究进展[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(01): 11-14.
[6] 宋文彬, 李肖山, 李勇, 李兴德, 龙国慧, 张阳, 宋沧桑. 肝移植受者围手术期真菌性眼内炎一例[J]. 中华移植杂志(电子版), 2022, 16(02): 101-104.
[7] 李莎莎, 陈桂丽, 刘莹. 一例出血性放射性膀胱炎术后并发尿源性多重耐药菌及真菌感染患者护理报告[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(01): 78-79.
[8] 吴娇艳, 鹿静雅, 符萌, 刘影. 侵袭性真菌性肺炎MSCT影像特征及与IL-17、IL-23相关性[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 835-837.
[9] 罗坤, 徐淑凤, 赵靖, 刘菲菲, 尹小波, 牛春密, 王晓杰. COPD急性加重期并发下呼吸道真菌感染危险因素分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 697-699.
[10] 孙浩, 许金卫, 陈小宇, 朱桂娟, 陈万洪. 肺结核空洞合并真菌感染的CT特征分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(01): 69-72.
[11] 李忻阳, 张禹, 罗佩婷, 王杨威, 崔文鹏. 腹膜透析相关性真菌性腹膜炎的防治进展[J]. 中华肾病研究电子杂志, 2020, 09(06): 260-263.
[12] 胡小凤, 姜剑, 袁军, 黄侠, 晓琴, 李自强, 刘旭辉, 陈莉, 陶勇, 钱竹韵. 眼内液检测诊断白色念珠菌眼内炎的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(02): 82-87.
[13] 付国静, 李心红. 真菌致消化性溃疡的发病机制及诊断和治疗研究进展[J]. 中华消化病与影像杂志(电子版), 2021, 11(06): 296-298.
[14] 邱银秀, 代天国, 熊小星, 马艳丽, 陈欣华, 麻宁. 5%碳酸氢钠溶液联合克霉唑耳浴治疗外耳道真菌病的临床疗效[J]. 中华临床医师杂志(电子版), 2020, 14(06): 448-451.
[15] 姜海迪, 王春霞, 贾永娟, 张慧, 赵梅娥. 脑出血患者血培养分离出胶红酵母菌的临床观察[J]. 中华诊断学电子杂志, 2021, 09(04): 247-250.
阅读次数
全文


摘要