切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2018, Vol. 11 ›› Issue (03) : 151 -156. doi: 10.3877/cma.j.issn.1674-6880.2018.03.002

所属专题: 文献

论著

急性呼吸窘迫综合征患者肺泡微环境对肺成纤维细胞生物学活性的影响
严一核1, 孙雪东1, 李智鑫1, 马叶萍1, 应利君1,()   
  1. 1. 312000 浙江绍兴,绍兴市人民医院重症医学科
  • 收稿日期:2017-11-14 出版日期:2018-06-01
  • 通信作者: 应利君
  • 基金资助:
    浙江省医药卫生研究计划(2016KYB308)

Effect of alveolar microenvironment on biologic activity of lung fibroblast in patients with acute respiratory distress syndrome

Yihe Yan1, Xuedong Sun1, Zhixin Li1, Yeping Ma1, Lijun Ying1,()   

  1. 1. Department of Intensive Care Unit, Shaoxing People's hospital, Shaoxing 312000, China
  • Received:2017-11-14 Published:2018-06-01
  • Corresponding author: Lijun Ying
  • About author:
    Corresponding author: Ying Lijun, Email:
引用本文:

严一核, 孙雪东, 李智鑫, 马叶萍, 应利君. 急性呼吸窘迫综合征患者肺泡微环境对肺成纤维细胞生物学活性的影响[J/OL]. 中华危重症医学杂志(电子版), 2018, 11(03): 151-156.

Yihe Yan, Xuedong Sun, Zhixin Li, Yeping Ma, Lijun Ying. Effect of alveolar microenvironment on biologic activity of lung fibroblast in patients with acute respiratory distress syndrome[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2018, 11(03): 151-156.

目的

探讨不同程度急性呼吸窘迫综合征(ARDS)肺泡微环境的变化对肺成纤维细胞(LF)的影响。

方法

以2014年1月至2016年12月绍兴市人民医院重症监护病房(ICU)收治的58例符合ARDS诊断标准的患者,依据患者氧合指数和柏林定义标准将患者分为轻度组(26例)、中度组(15例)、重度组(17例),另纳入10例行机械通气但无肺部疾病患者作为无肺损伤组。所有入选患者均进行支气管肺泡灌洗,留取支气管肺泡灌洗液(BALF)标本,酶联免疫吸附法(ELISA)检测其中白细胞介素1β(IL-1β)、角质细胞生长因子(KGF)和肝细胞生长因子(HGF)水平,并进行蛋白定量及细胞计数。同时,体外培养肺成纤维细胞系MRC-5细胞,与各组患者BALF共培养,采用Transwell法检测细胞迁移能力,采用Western-blotting法检测各组细胞Collagen Ⅰ和血小板源性生长因子α受体(PDGF-Rα)表达。

结果

与无肺损伤组比较,ARDS轻度组、中度组及重度组患者的IL-1β[12(8,21)、776(449,943)、802(691,1 004)、886(548,1 130)ng/L]、KGF[2.0(1.0,2.2)、19.0(15.8,24.5)、41.4(36.2,57.3)、64.7(49.2,82.1)ng/L]、HGF[90(75,106)、514(373,785)、867(674,1 248)、940(660,1 344)ng/L]、蛋白含量[(0.09 ± 0.03)、(0.29 ± 0.10)、(0.45 ± 0.09)、(0.68 ± 0.16)g/L]及细胞总数[(2.4 ± 0.6)、(16.5 ± 2.1)、(17.8 ± 2.0)、(18.2 ± 2.0)× 109个/mL]均明显升高(Z=26.182、55.871、36.354,F=72.860、177.291,P均<0.05),且与重度组患者比较,轻度组及中度组患者的KGF水平及蛋白含量显著降低(P均<0.05),轻度组仅HGF水平及总细胞数明显降低(P均<0.05),而ADRS各组间IL-1β比较,差异均无统计学意义(P均>0.05)。同时,与无肺损伤组比较,ARDS各组间趋化指数均明显升高(F=12.291,P=0.003),且重度ARDS组患者明显高于轻度及中度组患者(P均<0.05)。四组间CollagenⅠ蛋白及PDGF-Rα蛋白比较,差异均有统计学意义(F=358.943,P=0.001;F=4.574,P=0.002)。ARDS各组CollagenⅠ蛋白明显高于无肺损伤组,且中度、重度组明显高于轻度组(P均<0.05)。而PDGF-Rα蛋白在无肺损伤组和轻度组几乎无表达,但在中度、重度组均有明显表达(P均<0.05)。

结论

随着ARDS程度的加重,BALF中KGF、HGF明显上升,BALF可通过诱导LF表达PDGF-Rα和CollagenⅠ,促进LF的迁移与分化。

Objective

To evaluate the effect of changes in alveolar microenvironment on lung fibroblast (LF) in patients with acute respiratory distress syndrome (ARDS).

Methods

Fifty-eight ARDS patients admitted to the intensive care unit (ICU) of Shaoxing People's Hospital from January 2014 to December 2016 were recruited. The patients were divided into the mild group (n=26), moderate group (n=15) and severe group (n=17) according to patients' oxygenation index and Berlin definition criteria. Another 10 patients with mechanical ventilation but no pulmonary diseases were enrolled as the control group. All patients were received bronchoalveolar lavage and the bronchial alveolar lavage fluid (BALF) was collected. The levels of interleukin-1β (IL-1β), keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF) in the BALF were measured by enzyme linked immunosorbant assay (ELISA), and the protein content and cell counts in the BALF were also recorded. Lung fibroblasts (MRC-5) were cultured in vitro and co-cultured with BALF in each group. Cell migration assays were performed by the Transwell system. The expressions of CollagenⅠ and platelet-derived growth factor-receptor α (PDGF-Rα) were determined by Western-blotting.

Results

Compared with the control group, the levels of IL-1β [12 (8, 21), 776 (449, 943), 802 (691, 1 004), 886 (548,1 130) ng/L], KGF [2.0 (1.0, 2.2), 19.0 (15.8, 24.5), 41.4 (36.2, 57.3), 64.7 (49.2, 82.1) ng/L], HGF [90 (75, 106), 514 (373, 785), 867 (674, 1 248), 940 (660, 1 344) ng/L], the protein content [(0.09 ± 0.03), (0.29 ± 0.10), (0.45 ± 0.09), (0.68 ± 0.16) g/L] and cell counts [(2.4 ± 0.6), (16.5 ± 2.1), (17.8 ± 2.0), (18.2 ± 2.0) × 109/mL] in mild, moderate and severe groups increased significantly (Z=26.182, 55.871, 36.354; F=72.860, 177.291; all P<0.05). The KGF level and protein content in mild and moderate groups were much lower, and the HGF and cell counts in the mild group were much lower as compared with severe group (all P<0.05). However, there were no significant differences in the IL-1β level among each ARDS subgroups (all P>0.05). Compared with the control group, the cell migration assays in each ARDS subgroups were much higher (F=12.291, P=0.003), and they were highest in severe group (all P<0.05). The expressions of CollagenⅠand PDGF-Rα showed significant differneces among four groups (F=358.943, P=0.001; F=4.574, P=0.002). The expression of CollagenⅠ in each ARDS subgroups was much higher than that in the control group, and it was much higher in moderate and severe groups than in mild group (all P<0.05). The expression of PDGF-Rα increased obviously in moderate and severe groups, but it was almost absent in control and mild groups (all P<0.05).

Conclusion

With the aggravation of ARDS, the levels of KGF and HGF in BALF increased obviously, and the BALF in ARDS patients could induce LF migration and differentition through elevated CollagenⅠ and PDGF-Rα expressions.

表1 四组急性呼吸窘迫综合征患者的一般资料的比较(±s
表2 四组急性呼吸窘迫综合征患者BALF各项指标的比较(±s
图1 各组CollagenⅠ和PDGF-Rα蛋白表达的Western-blotting结果图
[1]
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315 (8): 788-800.
[2]
陈俊伊,王懿春.微小RNA-21和转化生长因子β1在急性呼吸窘迫综合征大鼠肺纤维化组织中的表达变化[J/CD].中华危重症医学杂志(电子版),2016,9(4):234-239.
[3]
Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment[J]. Annu Rev Pathol, 2011 (6): 147-163.
[4]
Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance[J]. Eur Respir J, 2014, 43 (1): 276-285.
[5]
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition[J]. JAMA, 2012, 307 (23): 2526-2533.
[6]
Standiford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome[J]. Transl Res, 2016, 167 (1): 183-191.
[7]
Huppert LA, Matthay MA. Alveolar fluid clearance in pathologically relevant conditions: in vitro and in vivo models of acute respiratory distress syndrome[J]. Front Immunol, 2017 (8): 371.
[8]
Villar J, Blanco J, Kacmarek RM. Current incidence and outcome of the acute respiratory distress syndrome[J]. Curr Opin Crit Care, 2016, 22 (1): 1-6.
[9]
Kamimoto M, Mizuno S, Matsumoto K, et al. Hepatocyte growth factor prevents multiple organ injuries in endotoxemic mice through a heme oxygenase-1-dependent mechanism[J]. Biochem Biophys Res Commun, 2009, 380 (2): 333-337.
[10]
Standiford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome[J]. Transl Res, 2016, 167 (1): 183-191.
[11]
Mokra D, Kosutova P. Biomarkers in acute lung injury[J]. Respir Physiol Neurobiol, 2015 (209): 52-58.
[12]
Quesnel C, Nardelli L, Piednoir P, et al. Alveolar fibroblasts in acute lung injury: biological behavior and clinical relevance[J]. Eur Respir J, 2010, 35 (6): 1312-1321.
[13]
Piednoir P, Quesnel C, Nardelli L, et al. Alveolar fluid in acute respiratory distress syndrome promotes fibroblast migration: role of platelet-derived growth factor pathway[J]. Crit Care Med, 2012, 40 (7): 2041-2049.
[14]
Millar FR, Summers C, Griffiths MJ, et al. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities[J]. Thorax, 2016, 71 (5): 462-473.
[15]
Zhou WQ, Wang P, Shao QP, et al. Lipopoly-saccharide promotes pulmonary fibrosis in acute respiratory distress syndrome (ARDS) via lincRNA-p21 induced inhibition of Thy-1 expression[J]. Mol Cell Biochem, 2016, 419 (1-2): 19-28.
[16]
刘军,邹桂娟,李维勤.急性呼吸窘迫综合征非机械通气治疗新进展[J/CD].中华危重症医学杂志(电子版),2014,7(1):59-63.
[17]
Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome[J]. N Engl J Med, 2017, 377 (6): 562-572.
[1] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[2] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[3] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[4] 刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.
[5] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[6] 孙芳, 王军, 孙钊宁, 余宏川, 杨婷婷, 孙欣荣. 肺泡灌洗液宏基因二代测序在儿童重症肺炎中的应用[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 27-34.
[7] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[8] 于燕兴, 梅喜庆, 刘凤娟, 于梓薇, 许亚慧, 徐飞. 高通量测序重症肺炎肺泡灌洗液病原体的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 785-788.
[9] 刘锦程, 王斌, 张雯, 张明周, 刘禹, 叶东樊, 黄赞胜, 邱凌霄, 卿斌, 王创业, 王南博, 王苹, 郭宇航, 周培花, 程秋霞, 徐智. 肺泡灌洗液RASSF1A及SHOX2甲基化联合径向超声特征对肺结节性质鉴别诊断的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 505-511.
[10] 马玉兰, 戴红臣, 宋金涛, 李桂涛, 毛国顺, 赵永. 肺力咳联合肺泡灌洗治疗大叶性支原体肺炎的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 837-840.
[11] 冼诗萍, 李展宇, 何建忠, 唐蕾, 赖俊, 刘野. 多灶微结节性肺泡上皮增生一例[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(05): 752-754.
[12] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[13] 李颖思, 符芳, 杨昕, 邓琼, 周航, 程肯, 李东至, 廖灿. 单细胞RNA测序技术探究CCN2基因在特纳综合征胎儿颈部淋巴水囊瘤中的关键作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 220-228.
[14] 陈晓丹, 李淑霞, 薛婷, 侯红瑛, 韩振艳. FGF19在妊娠期肝内胆汁淤积症患者血清中的表达水平及相关因素分析[J/OL]. 中华产科急救电子杂志, 2023, 12(04): 239-243.
[15] 徐立, 阎岩. aFGF修饰自体成纤维细胞治疗食管吻合口瘘的实验研究[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 180-187.
阅读次数
全文


摘要