切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2018, Vol. 11 ›› Issue (03) : 145 -150. doi: 10.3877/cma.j.issn.1674-6880.2018.03.001

所属专题: 文献

论著

Slit2/Robo4信号通路在输血相关急性肺损伤体外模型中的表达及作用
魏大臻1,(), 王本极1, 林孟相1, 郭献阳1, 程碧环1, 龚裕强1, 应斌宇1   
  1. 1. 325027 浙江温州,温州医科大学附属第二医院重症医学科
  • 收稿日期:2017-10-20 出版日期:2018-06-01
  • 通信作者: 魏大臻
  • 基金资助:
    温州市科学技术局基金项目(Y20140253)

Expression and effect of Slit2/Robo4 signaling pathway in vitro model of transfusion related acute lung injury

Dazhen Wei1,(), Benji Wang1, Mengxiang Lin1, Xianyang Guo1, Bihuan Cheng1, Yuqiang Gong1, Binyu Ying1   

  1. 1. Department of Critical Care Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
  • Received:2017-10-20 Published:2018-06-01
  • Corresponding author: Dazhen Wei
  • About author:
    Corresponding author: Wei Dazhen, Email:
引用本文:

魏大臻, 王本极, 林孟相, 郭献阳, 程碧环, 龚裕强, 应斌宇. Slit2/Robo4信号通路在输血相关急性肺损伤体外模型中的表达及作用[J]. 中华危重症医学杂志(电子版), 2018, 11(03): 145-150.

Dazhen Wei, Benji Wang, Mengxiang Lin, Xianyang Guo, Bihuan Cheng, Yuqiang Gong, Binyu Ying. Expression and effect of Slit2/Robo4 signaling pathway in vitro model of transfusion related acute lung injury[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2018, 11(03): 145-150.

目的

探讨Slit2/Robo4信号通路在输血相关急性肺损伤(TRALI)体外模型中的表达及作用。

方法

采用两次打击多形核中性粒细胞(PMNs)介导的人肺微血管内皮细胞(HMVECs)损伤模型作为TRALI体外模型,培养0、0.5、1、2、4、6 h后,采用Western-blotting法检测Robo4和血管内皮细胞钙粘连蛋白(VE-cadherin)表达,反转录酶PCR(RT-PCR)检测Robo4和Slit2信使RNA(mRNA)表达,体外内皮细胞通透性实验测定HMVECs通透性。加入不同浓度Slit2-N(0、0.5、1、4、10、20 μg/L)与HMVECs一起温孵24 h后,检测HMVECs完整性和通透性。

结果

在TRALI体外模型中,Robo4和Slit2 mRNA的表达在各时间点的比较,差异均有统计学意义(F=12.880、11.060,P均< 0.001);两者在2 h(0.72 ± 0.04、0.78 ± 0.05)、4 h(0.49 ± 0.04、0.49 ± 0.06)和6 h(0.34 ± 0.03、0.43 ± 0.11)均显著低于0 h(1.29 ± 0.06、1.40 ± 0.09),差异均有统计学意义(P均< 0.05)。Robo4蛋白表达在各时间点的比较,差异有统计学意义(F=11.560,P < 0.001);其在2、4和6 h(0.99 ± 0.04、0.66 ± 0.03、0.45 ± 0.04)均显著低于0 h(1.44 ± 0.04),差异均有统计学意义(P均< 0.05)。同时发现,VE-cadherin蛋白表达在各时间点的比较,差异也有统计学意义(F=9.667,P < 0.001);与0 h(1.46 ± 0.09)比较,VE-cadherin的表达在2、4和6 h(0.91 ± 0.08、0.78 ± 0.05、0.50 ± 0.04)也均有减少,差异均有统计学意义(P均< 0.05)。体外内皮细胞渗透性试验提示,HMVECs通透性在各时间点的比较,差异有统计学意义(F=21.940,P < 0.001);与0 h(1.42 ± 0.16)比较,HMVECs通透性在2、4、6 h(4.00 ± 0.35、5.70 ± 1.71、10.02 ± 2.24)均有增加,差异均有统计学意义(P均< 0.05)。加入外源性Slit2-N后,VE-cadherin蛋白表达的比较,差异有统计学意义(F=13.220,P < 0.001);与0 μg/L Slit2-N组(0.41 ± 0.08)相比,VE-cadherin在4、10、20 μg/L Slit2-N组表达(1.19 ± 0.35、1.49 ± 0.13、2.12 ± 0.21)均有增加,差异均有统计学意义(P均< 0.05)。体外内皮细胞渗透性实验提示,HMVECs通透性比较,差异有统计学意义(F=19.430,P < 0.001);与0 μg/L Slit2-N组(10.0 ± 2.2)相比,HMVECs通透性在4、10、20 μg/L Slit2-N组(4.2 ± 1.1、2.1 ± 0.7、1.8 ± 0.8)均有降低,差异均有统计学意义(P均< 0.05)。

结论

Slit2/Robo4信号通路可能参与TRALI的病理生理过程;使用外源性Slit2-N能调节TRALI体外模型中HMVECs的完整性和通透性,为治疗TRALI提供新的思路。

Objective

To investigate the expression and effect of Slit2/Robo4 signaling pathway in vitro model of transfusion related acute lung injury (TRALI).

Methods

A two-hit model of polymorphonuclear neutrophils (PMNs)-mediated human pulmonary microvascular endothelial cells (HMVECs) damage was used as TRALI in vitro model. After the HMVECs were incubated for 0, 0.5, 1, 2, 4, and 6 h, the protein expressions of Robo4 and vascular endothelial cadherin (VE-cadherin) were detected by Western-blotting, and the mRNA expressions of Robo4 and Slit2 were analyzed by reverse transcription PCR (RT-PCR). The permeability of HMVECs was detected by in vitro experiment of endothelial cell permeability. Then the HMVECs were incubated with 0, 0.5, 1, 4, 10, and 20 μg/L Slit2-N for 24 h. The integrity and permeability of HMVECs were detected.

Results

In vitro model of TRALI, the mRNA expressions of Robo4 and Slit2 both showed significant differences at different time points (F=12.880, 11.060; both P < 0.001); they were much lower at 2 h (0.72 ± 0.04, 0.78 ± 0.05), 4 h (0.49 ± 0.04, 0.49 ± 0.06), and 6 h (0.34 ± 0.03, 0.43 ± 0.11) than those at 0 h (1.29 ± 0.06, 1.40 ± 0.09; all P < 0.05). The protein expression of Robo4 showed significant difference at each time point (F=11.560, P < 0.001); it decreased at 2, 4, 6 h (0.99 ± 0.04, 0.66 ± 0.03, 0.45 ± 0.04) in comparing with 0 h (1.44 ± 0.04, all P < 0.05). In addition, the protein expression of VE-cadherin at each time point was significantly different (F=9.667, P < 0.001); its expression decreased significantly at 2, 4, 6 h (0.91 ± 0.08, 0.78 ± 0.05, 0.50 ± 0.04) in comparing with 0 h (1.46 ± 0.09, all P < 0.05). The vitro experiment of endothelial cell permeability revealed that the permeability of HMVECs was significant different at each time point (F=21.940, P < 0.001); as comparing with 0 h (1.42 ± 0.16), the permeability of HMVECs was significantly higher at 2, 4, 6 h (4.00 ± 0.35, 5.70 ± 1.71, 10.02 ± 2.24; all P < 0.05). After adding the exogenous Slit2-N, the expression of VE-cadherin protein was statistically significantly different (F=13.220, P < 0.001); it increased in the 4, 10, 20 μg/L Slit2-N groups (1.19 ± 0.35, 1.49 ± 0.13, 2.12 ± 0.21) as comparing with the 0 μg/L Slit2-N group (0.41 ± 0.08, all P < 0.05). The vitro experiment of endothelial cell permeability revealed that the permeability of HMVECs was significant different (F=19.430, P < 0.001); the permeability of HMVECs was significantly lower in the 4, 10, 20 μg/L Slit2-N groups (4.2 ± 1.1, 2.1 ± 0.7, 1.8 ± 0.8) as comparing with the 0 μg/L Slit2-N group (10.0 ± 2.2, all P < 0.05).

Conclusion

The Slit2/Robo4 signaling pathway may be involved in the pathophysiological process of TRALI. Exogenous Slit2-N may modulate the integrity and permeability of HMVECs in vitro TRALI model, and become a promising candidate for developing novel therapies against TRALI.

表1 不同时间点Robo4、Slit2在TRALI体外模型中的表达(±s
表2 TRALI体外模型中VE-cadherin表达及HMVECs通透性在不同时间点的比较(±s
表3 在不同浓度Slit2-N作用下TRALI体外模型中VE-cadherin表达及HMVECs通透性的比较(±s
[1]
US Department of Health and Human Services, Office of the Assistant Secretary of Health. Fatalities reported to FDA following blood collection and transfusions: annual summary for fiscal year 2015. Washington, DC: US Department of Health and Human Services, 2016: 1-16.
[2]
Peters AL, van Hezel ME, Juffermans NP, et al. Pa-thogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside[J]. Blood Rev, 2015, 29 (1): 51-61.
[3]
Peters AL, van SD, Vlaar AP. Antibody-mediated tr-ansfusion-related acute lung injury: from discovery to prevention[J]. Br J Haematol, 2015, 170 (5): 597-614.
[4]
张慧慧,蔡国龙,胡才宝,等. 乌司他丁对脓毒症大鼠急性肺损伤的保护作用及其机制研究[J/CD].中华危重症医学杂志(电子版),2017,10(3):153-158.
[5]
左志刚,裴柳,宋德刚,等.选择性肠道去污对非感染性创伤患者合并血清降钙素原升高的治疗作用[J/CD].中华危重症医学杂志(电子版),2016,9(2):105-108.
[6]
Otrock ZK, Liu C, Grossman BJ. Transfusion-related acute lung injury risk mitigation: an update[J]. Vox Sang, 2017, 112 (8): 694.
[7]
Middelburg RA, van der Bom JG. Transfusion-related acute lung injury not a two-hit, but a multicausal model[J]. Transfusion, 2015, 55 (5): 953-960.
[8]
Shaz BH, Stowell SR, Hillyer CD. Transfusion-related acute lung injury: from bedside to bench and back[J]. Blood, 2011, 117 (5): 1463-1471.
[9]
Bekes I, Haunerdinger V, Sauter R, et al. Slit2/Ro-bo4 signaling: potential role of a VEGF-antagonist pathway to regulate luteal permeability[J]. Geburtshilfe Frauenheilkd, 2017, 77 (1): 73-80.
[10]
Zamorano P, Marin N, Cordova F, et al. S-ni-trosylation of VASP at cysteine 64 mediates the inflammation-stimulated increase in microvascular permeability[J]. Am J Physiol Heart Circ Physiol, 2017, 313 (1): H66-H71.
[11]
Zhang X, Yu J, Kuzontkoski PM, et al. Slit2/Robo4 signaling modulates HIV-1 gp120-induced lymphatic hyperpermeability[J]. PLoS Pathog, 2012, 8 (1): e1002461.
[12]
陈桂秀,王浩宇,刘涛,等. Slit2/Robo4信号通路对小鼠心肌微血管内皮细胞增殖和迁移的影响[J].中华心血管病杂志,2013,41(12):1034-1039.
[13]
Chen CY, Tsai CH, Chen CY, et al. Human placental multipotent mesenchymal stromal cells modulate placenta angiogenesis through Slit2-Robo signaling[J]. Cell Adh Migr, 2016, 10 (1-2): 66-76.
[14]
Enomoto S, Mitsui K, Kawamura T, et al. Suppression of Slit2/Robo1 mediated HUVEC migration by Robo4[J]. Biochem Biophys Res Commun, 2016, 469 (4): 797-802.
[15]
London NR, Zhu W, Bozza FA, et al. Targeting Ro-bo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza[J]. Sci Transl Med, 2010, 2 (23): 23ra19.
[16]
Wyman TH, Bjornsen AJ, Elzi DJ, et al. A two-insult in vitro model of PMN-mediated pulmonary endothelial damage: requirements for adherence and chemokine release[J]. Am J Physiol Cell Physiol, 2002, 283 (6): C1592-C1603.
[17]
Silliman CC, Curtis BR, Kopko PM, et al. Donor an-tibodies to HNA-3a implicated in TRALI reactions prime neutrophils and cause PMN-mediated damage to human pulmonary microvascular endothelial cells in a two-event in vitro model[J]. Blood, 2007, 109 (4): 1752-1755.
[18]
Itho A, Miyabayashi T, Ohno M, et al. Cloning and expressions of three mammalian homologues of Drosophila slit suggest possible roles for Slit in the formation and maintenance of the nervous system[J]. Brain Res Mol Brain Res, 1998, 62 (2): 175-186.
[19]
Wu JY, Feng L, Park HT, et al. The neuronal re-pellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors[J]. Nature, 2001, 410 (6831): 948-952.
[20]
Yu J, Zhang X, Kuzontkoski PM, et al. Slit2N and Robo4 regulate lymphangiogenesis through the VEGF-C/VEGFR-3 pathway[J]. Cell Commun Signal, 2014, 12 (1): 25.
[1] 袁高洁, 李忠俊. 输血相关急性肺损伤的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 397-399.
[2] 赵咏梅, 王瑞, 李新宇, 贺志高, 桂俊豪, 张东辉, 王晓燕, 张峰, 张羽, 姜鹏. ANGPTL4对LPS诱导的人肺微血管内皮细胞损伤的保护作用[J]. 中华肺部疾病杂志(电子版), 2017, 10(02): 192-195.
[3] 姜硕, 王梦楠, 赵慧颖, 郭晓夏, 王慧霞, 安友仲. cGAS/STING通过NLRP3炎性小体调控人肺微血管内皮细胞炎症的作用机制[J]. 中华重症医学电子杂志, 2021, 07(03): 233-240.
阅读次数
全文


摘要