[1] |
Elkon B, Cambrin JR, Hirshberg E, et al. Hyperglyce-mia: an independent risk factor for poor outcome in children with traumatic brain injury[J]. Pediatr Crit Care Med, 2014, 15 (7): 623-631.
|
[2] |
Rabbe A, Grolms C, Sorge O, et al. Serum S-100B protein in severe head injury[J]. Neurosurgery, 1999, 45 (3): 477-483.
|
[3] |
Ingebrigtsen T, Romner B, Marup-Jensen S, et al. Ser-um S100B protein levels are correlated with subclinical neruocognitive declines after carotid enderterectomy[J]. Neurosurgery, 2001, 49 (5): 1076-1082.
|
[4] |
Weortgen C, Rothoer R, Metz C, et al. Comparison of clinical radiologic and serum marker as prognostic factors after severe head injury[J]. J Trauma, 1999, 47 (6): 1126-1130.
|
[5] |
Berger RP, Adelson PD, Pierce MC, et al. Serum neu-ron specific enolase S100B and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children[J]. J Neurosurg, 2005, 103 (1 Suppl): 61-68.
|
[6] |
Bandyopadhyay S, Hennas H, Gorelick MH, et al. Ser-um neuron-specific enolase as a predictor of short-term outcome in children with closed traumatic brain injury[J]. Acad Emerg Med, 2005, 12 (8): 732-738.
|
[7] |
Jackson P, Thompson RJ. The demonstration of new human brain-specific protein by high-resolution two-dimensional polyacrylamide gel electrophoresis[J]. J Neurol Sci, 1981, 49 (3): 429-438.
|
[8] |
Liu MC, Akinyi L, Scharf D, et al. Ubiquitin C-termi-nal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats[J]. Eur J Neurosci, 2010, 31 (4): 722-732.
|
[9] |
Mondello S, Linnet A, Buki A, et al. Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury[J]. Neurosurgery, 2012, 70 (3): 666-675.
|
[10] |
Papa L, Akinyi L, Lin MC, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury[J]. Crit Care Med, 2010, 38 (1): 138-144.
|
[11] |
Lumpkins KM, Bochicchio GV, Keledjian K, et al. Glial fibrillery acidic protein is highly correlated with brain injury[J]. J Trauma, 2008, 65 (4): 778-782.
|
[12] |
邵林华,陈亦华,郑龙,等.颅脑损伤患者血清GFAP含量变化及其临床意义[J].全科医学临床与教育,2011,9(3):255-257.
|
[13] |
毛庆,陈俊杰,李能德,等.血清髓鞘碱性蛋白对急性闭合性脑损伤程度的判断价值[J].华西医科大学学报,1995,26(2):135-137.
|
[14] |
李栓德,杨术真,杨喜民,等.重型颅脑损伤患者的血清和脑脊液髓鞘碱性蛋白变化及意义[J].中国神经免疫学和神经病学杂志,1999,6(1):44-46.
|
[15] |
Smirnova L, Grafe A, Seiler A, et al. Regulation of miRNA expression during neural cell specification[J]. Eur J Neurosci, 2005, 21 (6): 1469-1477.
|
[16] |
Patrik G, Ollf G, Malin R, et al. The brain-enriched microRNA miR-124 in plasma predicts neurological outcome after cardiac arrest[J]. Crit Care, 2014, 18 (2): R40.
|
[17] |
Redell JB, Moore AN, Ward NH 3rd, et al. Human traumatic brain injury alters plasma microRNA level[J]. J Neurotrauma, 2010, 27 (12): 2147-2156.
|
[18] |
卢峥婷,符跃强,刘成军,等.入院3小时内乳酸值对中重型创伤性脑损伤患儿死亡的预测价值[J].中国循证儿科杂志,2016,11(4):247-250.
|
[19] |
Kaplan LJ, Kellum JA. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury[J]. Crit Care Med, 2004, 32 (5): 1120-1124.
|
[20] |
Callaway DW, Shapiron NI, Donnino MW, et al. Ser-um lactate and base deficit as predictors of mortality in normotensive elderly blunt trauma patients[J]. J Trauma, 2009, 66 (4): 1040-1044.
|
[21] |
Kei H, Kei N, Masaru S, et al. Estimated cerebral oxyhemoglobin as a useful indicator of neuroprotection in patients with post-cardiac arrest syndrome: a prospective multicenter observational study[J]. Crit Care, 2014, 18 (5): 500.
|
[22] |
Wechselberger K, Schmid A, Posod A, et al. Secreto-neurin serum levels in healthy term neonates and neonates with hypoxic-ischaemic encephalopathy[J]. Neonatology, 2016, 110 (1): 14-20.
|
[23] |
Ischia R, Gasser RW, Fishcher-Colbrie R, et al. Lev-els and molecular properties of secretoneurin-immunoreactivity in the serum and urine of control and neuroendocrine tumor patients[J]. J Clin Endocrinol Metab, 2000, 85 (1): 355-360.
|