切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2018, Vol. 11 ›› Issue (01) : 11 -16. doi: 10.3877/cma.j.issn.1674-6880.2018.01.002

所属专题: 文献

论著

不同剂量右美托咪定对脓毒症大鼠微循环的影响
马燕1, 拜合提尼沙·吐尔地1, 于湘友1, 王毅1, 宋云林1,()   
  1. 1. 830054 乌鲁木齐,新疆医科大学第一附属医院重症医学科
  • 收稿日期:2017-02-22 出版日期:2018-02-01
  • 通信作者: 宋云林
  • 基金资助:
    国家自然科学基金项目(81160232); 中华医学会临床医学科研专项资金-国瑞重症科研资金项目(13091520537); 新疆维吾尔自治区自然科学基金项目(2005211C065)

Effect of different doses of dexmedetomidine on microcirculation of rats with sepsis

Yan Ma1, Tuerdi Baihetinisha·1, Xiangyou Yu1, Yi Wang1, Yunlin Song1,()   

  1. 1. Department of Intensive CareUnit, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
  • Received:2017-02-22 Published:2018-02-01
  • Corresponding author: Yunlin Song
  • About author:
    Corresponding author: Song Yunlin, Email:
引用本文:

马燕, 拜合提尼沙·吐尔地, 于湘友, 王毅, 宋云林. 不同剂量右美托咪定对脓毒症大鼠微循环的影响[J]. 中华危重症医学杂志(电子版), 2018, 11(01): 11-16.

Yan Ma, Tuerdi Baihetinisha·, Xiangyou Yu, Yi Wang, Yunlin Song. Effect of different doses of dexmedetomidine on microcirculation of rats with sepsis[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2018, 11(01): 11-16.

目的

探讨不同剂量右美托咪定对脓毒症大鼠微循环系统的影响。

方法

48只Wistar大鼠按随机数字法分为盲肠结扎穿孔术(CLP)组、小剂量治疗组、中剂量治疗组和大剂量治疗组,每组12只。脓毒症模型采用CLP法进行制作,小、中、大剂量治疗组大鼠模型制作完成后,分别将右美托咪定以2.5 μg·kg-1·h-1、5 μg·kg-1·h-1和10 μg·kg-1·h-1的速度经尾静脉持续泵入。记录各组大鼠CLP术后1、3、5 h的平均动脉压和心率,以及CLP后3 h动脉血气包括pH值、二氧化碳分压、氧分压、细胞外液剩余碱、碳酸氢盐水平、总二氧化碳含量、氧饱和度及血乳酸水平,并计算24 h各组大鼠死亡情况。

结果

四组大鼠平均动脉压及心率水平比较,差异均有统计学意义(F=2.935、3.862,P=0.005、0.001)。与CLP组相比,小、中、大剂量治疗组大鼠的平均动脉压水平在术后1 h均显著降低(P均< 0.05),但术后3、5 h比较差异均无统计学意义(P均> 0.05);而心率则在术后3、5 h开始降低(P均< 0.05)。CLP组大鼠术后3、5 h的平均动脉压较1 h均显著降低(P均< 0.05),而小、中、大剂量治疗组大鼠术后3、5 h的心率均较同组1 h显著降低(P均< 0.05),小、中剂量治疗组大鼠术后5 h的心率均较同组3 h显著降低(P均< 0.05)。四组大鼠pH值[(7.27 ± 0.07)、(7.17 ± 0.08)、(7.12 ± 0.07)、(7.13 ± 0.07)]、二氧化碳分压[(38 ± 8)、(72 ± 21)、(77 ± 24)、(83 ± 16)mmHg]、细胞外液剩余碱[(-9.7 ± 3.9)、(-3.2 ± 2.8)、(-4.7 ± 3.4)、(-2.0 ± 1.7)mmol/L]、碳酸氢盐水平[(17.4 ± 3.3)、(25.0 ± 2.7)、(24.7 ± 4.2)、(27.1 ± 1.7)mmol/L]、总二氧化碳含量[(18.6 ± 3.7)、(27.1 ± 2.8)、(26.9 ± 4.9)、(29.6 ± 2.1)mmol/L]、氧饱和度[(97.8 ± 1.0)%、(97.2 ± 1.5)%、(93.9 ± 4.2)%、(94.4 ± 4.0)%]及血乳酸水平[(94.45 ± 4.01)、(0.63 ± 0.66)、(0.63 ± 0.43)、(0.45 ± 0.38)mmol/L]比较,差异均有统计学意义(F=21.902、34.460、30.096、33.709、33.988、18.076、39.916,P均< 0.05),而氧分压水平[(115 ± 17)、(118 ± 23)、(105 ± 19)、(109 ± 22)mmHg]比较,差异无统计学意义(F=1.545,P > 0.05)。小、中、大剂量治疗组大鼠pH值、二氧化碳分压、细胞外液剩余碱、碳酸氢盐、总二氧化碳含量及血乳酸水平与CLP组大鼠比较,差异均有统计学意义(P均< 0.05),而氧饱和度方面比较,中、大剂量治疗组大鼠均较CLP组有所降低(P均< 0.05)。此外,小剂量治疗组大鼠总二氧化碳含量、氧饱和度及中剂量治疗组大鼠细胞外液剩余碱与大剂量治疗组比较,差异均有统计学意义(P均< 0.05)。四组大鼠死亡构成比(11/1、9/3、3/9、2/10)比较,差异有统计学意义(χ2=17.658,P=0.001),且中、大剂量治疗组较CLP组和小剂量治疗组均显著降低(P均< 0.008)。

结论

右美托咪定在CLP脓毒症大鼠中持续输注3 h内即明显改善微循环系统,使心率显著下降并维持平均动脉压稳定。随着右美托咪定输注剂量的增加,CLP脓毒症大鼠的生存情况明显得到改善。

Objective

To evaluate the effects of dexmedetomidine at different doses on the early microcirculatory system in septic rats.

Methods

A total of 48 Wistar rats were randomly divided into the cecal ligation and puncture (CLP) group, small-dose treatment group, medium-dose treatment group and large-dose treatment group, 12 rats in each group. The sepsis model was made by the CLP method, and dexmedetomidine was given respectively at the speed of 2.5 μg·kg-1·h-1, 5 μg·kg-1·h-1 and 10 μg·kg-1·h-1 to rats in small, medium and large-dose treatment groups through continuous tail vein pumping. The mean arterial pressure and heart rate at 1, 3, 5 h after CLP were recorded; arterial blood gas was measured at 3 h after CLP, including pH, partial pressure of carbon dioxide, partial pressure of oxygen, base excess in extracellular fluid, and levels of bicarbonate, total carbon dioxide, oxygen saturation and blood lactic acid; the death of rats in each group at 24 h was calculated.

Results

The heart rate and the level of mean arterial pressure in the four groups were significantly different (F=2.935, 3.862; P=0.005, 0.001). Compared with the CLP group, the mean arterial pressure of rats in small, medium and large-dose treatment groups decreased significantly at 1 h after operation (all P < 0.05), but there were no significant differences among the three groups at 3 h and 5 h after operation (all P > 0.05). However, the heart rate of rats in small, medium and large-dose treatment groups began to decrease at 3 h and 5 h after operation (all P < 0.05). The mean arterial pressure in the CLP group at 3 h and 5 h after operation was significantly lower than that at 1 h (all P < 0.05), while the heart rate of rats in the small, medium and large-dose treatment groups at 3 h and 5 h after operation was significantly lower than that at 1 h (all P < 0.05). The heart rate at 5 h after operation in the small and medium-dose treatment groups was significantly lower than that at 3 h (all P < 0.05). There were significant differences at the pH value [(7.27 ± 0.07), (7.17 ± 0.08), (7.12 ± 0.07), (7.13 ± 0.07)], partial pressure of carbon dioxide [(38 ± 8), (72 ± 21), (77 ± 24), (83 ± 16) mmHg], base excess in extracellular fluid [(-9.7 ± 3.9), (-3.2 ± 2.8), (-4.7 ± 3.4), (-2.0 ± 1.7) mmol/L], and levels of bicarbonate [(17.4 ± 3.3), (25.0 ± 2.7), (24.7 ± 4.2), (27.1 ± 1.7) mmol/L], total carbon dioxide [(18.6 ± 3.7), (27.1 ± 2.8), (26.9 ± 4.9), (29.6 ± 2.1) mmol/L], oxygen saturation [(97.8 ± 1.0)%, (97.2 ± 1.5)%, (93.9 ± 4.2)%, (94.4 ± 4.0)%] and blood lactic acid [(94.45 ± 4.01), (0.63 ± 0.66), (0.63 ± 0.43), (0.45 ± 0.38) mmol/L] in the four groups (F=21.902, 34.460, 30.096, 33.709, 33.988, 18.076, 39.916; all P < 0.05). In the same time, there was no significant difference in partial pressure of oxygen [(115 ± 17), (118 ± 23), (105 ± 19), (109 ± 22) mmHg; F=1.545, P > 0.05]. Compared with those in the CLP group, the pH value, partial pressure of carbon dioxide, base excess in extracellular fluid, bicarbonate, total carbon dioxide and blood lactic acid of rats in the small, medium and large-dose treatment groups were significantly different (all P < 0.05), and the oxygen saturation was significantly lower in the medium and large-dose treatment groups than in the CLP group (all P < 0.05). In addition, compared with the large-dose treatment group, the total carbon dioxide content and oxygen saturation in the small-dose treatment group and base excess in extracellular fluid in the medium-dose treatment group were significantly different (all P < 0.05). The proportional mortality indicator of the four groups (11/1, 9/3, 3/9, 2/10) was statistically significantly different (χ2=17.658, P=0.001), and it was significantly lower in the medium and large-dose treatment groups than in the CLP and small-dose treatment groups (all P < 0.008).

Conclusions

The continuous infusion of dexmedetomidine into CLP sepsis rats within 3 hours can significantly improve the microcirculatory system, decrease the heart rate and stabilize the mean arterial pressure. The survival of CLP sepsis rats can be obviously improved with the increased dose of dexmedetomidine.

表1 四组大鼠平均动脉压及心率比较(±s
表2 四组大鼠血气分析及血乳酸水平比较(±s
[1]
Marik PE. Early management of severe sepsis: conce-pts and controversies[J]. Chest, 2014, 145 (6): 1407-1418.
[2]
孙文武,毛恩强.微循环变化对于脓毒症患者液体复苏治疗的意义[J/CD].中华危重症医学杂志(电子版),2016,9(3):201-204.
[3]
Miranda ML, Balarini MM, Bouskela E. Dexmedetomi-dine attenuates the microcirculatory derangements evoked by experimental sepsis[J]. Anesthesiology, 2015, 122 (3): 619-630.
[4]
马燕,于湘友.不同剂量右美托咪定对脓毒症大鼠早期免疫调节的影响[J].中华急诊医学杂志,2016,25(9):1149-1153.
[5]
Sakr Y, Dubois MJ, De Backer D, et al. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock[J]. Crit Care Med, 2004, 32 (9): 1825-1831.
[6]
Verdant CL, De Backer D, Bruhn A, et al. Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis[J]. Crit Care Med, 2009, 37 (11): 2875-2881.
[7]
Secor D, Li F, Ellis CG, et al. Impaired microvascular perfusion in sepsis requires activated coagulation and pselectin-mediated platelet adhesion in capillaries[J]. Intensive Care Med, 2010, 36 (11): 1928-1934.
[8]
Taccone FS, Su F, Pierrakos C, et al. Cerebral micro-circulation is impaired during sepsis: an experimental study[J]. Crit Care, 2010, 14 (4): R140.
[9]
Pandharipande PP, Sanders RD, Girard TD, et al. Eff-ect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial[J]. Crit Care, 2010, 14 (2): R38.
[10]
Venn M, Newman J, Grounds M. A phase Ⅱ study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit[J]. Intensive Care Med, 2003, 29 (2): 201-207.
[11]
Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial[J]. JAMA, 2009, 301 (5): 489-499.
[12]
Pandharipande PP, Pun BT, Herr DL, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial[J]. JAMA, 2007, 298 (22): 2644-2653.
[13]
Tan JA, Ho KM. Use of dexmedetomidine as a sed-ative and analgesic agent in critically ill adult patients: a meta-analysis[J]. Intensive Care Med, 2010, 36 (6): 926-939.
[14]
马燕,于湘友,王毅.不同剂量右美托咪定对脓毒症大鼠血流动力学的影响[J].中国急救复苏与灾害医学杂志,2017,12(9):930-933.
[15]
Marik PE, Baram M. Noninvasive hemodynamic moni-toring in the intensive care unit[J]. Crit Care Clin,2007, 23 (3): 383-400.
[16]
Taniguchi T, Kidani Y, Kanakura H, et al. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats[J]. Crit Care Med, 2004, 32 (6): 1322-1326.
[17]
Taniguchi T, Kurita A, Kobayashi K, et al. Dose- and time-related effects of dexmedetomidine on mortality and inflammatory responses to endotoxin-induced shock in rats[J]. J Anesth, 2008, 22 (3): 221-228.
[18]
Qiao H, Sanders RD, Ma D, et al. Sedation improves early outcome in severely septic Sprague Dawley rats[J]. Crit Care, 2009, 13 (4): R136.
[1] 徐娟, 孙汝贤, 赵东亚, 张清艳, 金兆辰, 蔡燕. 右美托咪定序贯镇静模式对中深度镇静的机械通气患者预后和谵妄的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 363-369.
[2] 龚利缘, 应利君, 吕铁, 李川吉. 平均动脉压对不同乳酸清除率脓毒性休克患者预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 37-42.
[3] 梁潇, 黄绍农, 赵聚钊, 陈志聪, 朱耀旻, 王昱萌. 右美托咪定复合罗哌卡因局部浸润对颞下颌关节术后疼痛及恶心呕吐的影响[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 49-54.
[4] 钟轼, 李斌飞, 温君琳, 古晨, 廖小卒. 右美托咪定缓解神经病理性疼痛作用机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(03): 237-240.
[5] 李志伟, 向琪, 彭胜男, 郭玲, 孙贱根, 杨川. 右美托咪定与曲马多分别复合罗哌卡因在全麻下结肠癌根治术中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 182-185.
[6] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[7] 张少华, 崔振华, 马斌, 仲伟娟. 右美托咪定复合布比卡因在腹股沟疝Lichtenstein术中应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(03): 312-315.
[8] 芮杰, 陈家新, 于会梅, 张畅. 局部神经阻滞联合静脉应用右美托咪定在老年腹股沟疝术中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 196-200.
[9] 张宏江, 刘雪莲, 郑立. 瑞芬太尼联合右美托咪定在腹腔镜疝囊高位结扎术中的麻醉效果及对并发症的影响[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(04): 425-428.
[10] 陈静, 张春明, 周斌, 吴明明. 不同负荷剂量右美托咪定联合酮咯酸氨丁三醇对胸腔镜肺癌根治术后疼痛和认知功能的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 86-88.
[11] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[12] 孟永生, 雍容, 吉晓丽, 赵钰龙, 赵鹏飞. 右美托咪定复合七氟醚对脑出血继发性损伤的预防效果及神经保护机制分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 44-50.
[13] 黄泽辉, 梁杰贤, 曾伟. 右美托咪定联合艾司氯胺酮在小儿无痛胃镜检查中的应用研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 510-513.
[14] 隋金玲, 张爱萍, 许旭东. 右美托咪定复合瑞芬太尼在内镜逆行胰胆管造影术老年患者中的麻醉效果[J]. 中华消化病与影像杂志(电子版), 2022, 12(06): 357-360.
[15] 喇宏玲, 李育耕, 阿里木江·司马义, 徐桂萍, 苏涛. 右美托咪定复合舒芬太尼应用于肥胖患者无痛胃镜检查清醒镇静的效果[J]. 中华胃食管反流病电子杂志, 2023, 10(02): 77-81.
阅读次数
全文


摘要