切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2017, Vol. 10 ›› Issue (06) : 386 -390. doi: 10.3877/cma.j.issn.1674-6880.2017.06.005

所属专题: 文献

论著

核因子κB在重症急性胰腺炎大鼠肠黏膜屏障损伤中的作用机制
朱青云1, 杨世刚2, 潘新亭1,(), 孙英1, 李爱芹1, 弥亮钰1, 万有栋1, 赵连兴1, 周长勇1   
  1. 1. 266000 山东青岛,青岛大学附属医院急诊科
    2. 262500 山东青州,青州市黄楼医院急门诊
  • 收稿日期:2017-07-17 出版日期:2017-12-01
  • 通信作者: 潘新亭
  • 基金资助:
    中国博士后科学基金面上项目(2015M582058); 山东省科技发展计划项目(2013GGB14018)

Mechanism of the nuclear factor kappa B in intestinal mucosal barrier damage in rats with severe acute pancreatitis

Qingyun Zhu1, Shigang Yang2, Xinting Pan1,(), Ying Sun1, Aiqin Li1, Liangyu Mi1, Youdong Wan1, Lianxing Zhao1, Changyong Zhou1   

  1. 1. Department of Emergency Center, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
    2. Department of Emergency Center, Qingzhou Huanglou Hospital, Qingzhou 262500, China
  • Received:2017-07-17 Published:2017-12-01
  • Corresponding author: Xinting Pan
  • About author:
    Corresponding author: Pan Xinting, Email:
引用本文:

朱青云, 杨世刚, 潘新亭, 孙英, 李爱芹, 弥亮钰, 万有栋, 赵连兴, 周长勇. 核因子κB在重症急性胰腺炎大鼠肠黏膜屏障损伤中的作用机制[J/OL]. 中华危重症医学杂志(电子版), 2017, 10(06): 386-390.

Qingyun Zhu, Shigang Yang, Xinting Pan, Ying Sun, Aiqin Li, Liangyu Mi, Youdong Wan, Lianxing Zhao, Changyong Zhou. Mechanism of the nuclear factor kappa B in intestinal mucosal barrier damage in rats with severe acute pancreatitis[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2017, 10(06): 386-390.

目的

探讨核因子κB(NF-κB)在重症急性胰腺炎(SAP)大鼠肠黏膜屏障损伤中的作用机制。

方法

24只Wastar大鼠按随机数字表法分为对照组、SAP组和NF-κB抑制剂组即二硫代氨基甲酸吡咯烷(PDTC)组,每组各8只。制作SAP大鼠模型,对照组仅翻动胰腺,PDTC组于建模后2 h经尾静脉注射PDTC溶液40 mL/kg。各组大鼠于建模后24 h处死,观察各组大鼠腹腔内大体改变,比较各组肠黏膜的病理改变、通透性的变化及肿瘤坏死因子α(TNF-α)、白细胞介素1(IL-1)的表达水平,应用免疫组织化学法检测大鼠肠黏膜上皮细胞紧密连接蛋白Occludin的表达。

结果

对照组大鼠腹腔内无明显炎症征象,肠管无水肿充血;SAP组和PDTC组大鼠均有不同程度的腹水、肠管水肿、充血,且SAP组更为严重。光学显微镜下对照组肠黏膜未见明显损伤,SAP组和PDTC组大鼠回肠可见不同程度的肠黏膜破坏,且PDTC组较轻。三组大鼠的病理评分[(3.6 ± 1.4)、(21.3 ± 3.7)、(33.8 ± 4.2)分]和肠黏膜通透性[(22 ± 6)、(188 ± 26)、(328 ± 35)nL·min-1·cm-1]比较,差异均有统计学意义(F = 7.259、6.402,P均< 0.05),且SAP组肠黏膜通透性较PDTC组增加更为显著(P < 0.05)。三组大鼠TNF-α[(146 ± 37)、(1 684 ± 80)、(2 896 ± 99)ng/L],IL-1 [(53 ± 10)、(1 756 ± 60)、(2 893 ± 88)ng/L]表达水平比较,差异均有统计学意义(F = 5.751、7.247,P均< 0.05),其中SAP组和PDTC组肠道TNF-α、IL-1表达水平均较对照组显著增加(P均< 0.05),且SAP组大鼠TNF-α和IL-1表达水平均较PDTC组更高(P均< 0.05)。免疫组织化学结果显示,对照组Occludin蛋白沿肠黏膜上皮细胞分布,呈很强的棕褐色线状信号;PDTC组Occludin的定位与对照组没有明显区别,但棕褐色阳性信号有所减弱;SAP组阳性细胞明显减少。三组大鼠Occludin[(15.6 ± 3.0)、(6.4 ± 1.4)、(3.1 ± 1.2)]表达水平比较,差异有统计学意义(F = 5.427,P < 0.05)。

结论

SAP大鼠肠黏膜屏障损伤可能与肠组织中NF-κB表达升高有关,从而下调肠上皮细胞紧密连接蛋白Occludin的表达,抑制NF-κB表达对SAP肠黏膜屏障损伤具有保护作用。

Objective

To investigate the role of the nuclear factor-kappa B (NF-κB) in intestinal mucosal barrier injury in rats with severe acute pancreatitis (SAP).

Methods

A total of 24 Wastar rats were divided into the control group, the SAP group and the NF-κB inhibitor group [i.e. the pyrrolidine dithiocarbamate (PDTC) group] according to the random number table method, 8 rats in each group. The SAP rat models were made, rats in the control group were only turned the pancreas, and rats in the PDTC group were injected with 40 mL/kg PDTC solution through tail veins after modeling for 2 h. Rats in each group were sacrificed after modeling for 24 h. Then the gross changes in the abdominal cavity of rats in each group were observed; the pathological changes of the intestinal mucosa, the change of permeability, and the expressions of tumor necrosis factor-alpha (TNF-α) and interleukin 1 (IL-1) were compared. The expression of Occludin in intestinal mucosal epithelial cells of rats was detected by the immunohistochemical method.

Results

There was no obvious inflammation in the abdominal cavity and no edema and hyperemia in the intestinal tract of rats in the control group, while the rats in SAP and PDTC groups had different degrees of ascites, intestinal edema and hyperemia, and rats in the SAP group were more serious. No obvious damage can be seen in the intestinal mucosa in the control group under the optical microscope, while different degrees of intestinal mucosal damage were observed in the ileum of rats in the SAP and PDTC groups, and the PDTC group was lighter. The pathological scores [(3.6 ± 1.4), (21.3 ± 3.7), (33.8 ± 4.2)] and the intestinal mucosal permeability [(22 ± 6), (188 ± 26), (328 ± 35) nL·min-1·cm-1] were significantly different in these three groups (F = 7.259, 6.402; both P < 0.05). The permeability of intestinal mucosa in the SAP group increased more markedly as compared to the PDTC group (P < 0.05). The expressions of TNF-α [(146 + 37), (1 684 + 80), (2 896 + 99) ng/L] and IL-1 [(53 ± 10), (1 756 ± 60), (2 893± 88) ng/L] in these three groups both showed statistical significance (F = 5.751, 7.247; both P < 0.05). The expressions of TNF-α and IL-1 in the intestinal tract in SAP and PDTC groups were significantly higher than those in the control group (all P < 0.05), and the expressions of TNF-α and IL-1 were higher in the SAP group than in the PDTC group (all P < 0.05). The immunohistochemical results showed that the Occludin proteins in the control group were distributed along the epithelial cells of the intestinal mucosa and showed a strong brown linear signal. The localization of Occludin in the PDTC group was not significantly different from that in the control group, but the positive brown signal was weakened, and the positive cells decreased significantly in the SAP group. There was significant difference of Occludin expressions [(15.6 ± 3.0), (6.4 ± 1.4), (3.1 ± 1.2)] in these three groups (F = 5.427, P < 0.05).

Conclusion

The intestinal mucosal barrier damage in SAP rats may be related to the increase of the NF-κB expression in intestinal tissues, thus down-regulation of the Occludin expression in intestinal epithelial cells and the inhibition of the NF-κB expression would have a protective effect on the intestinal mucosal barrier of SAP.

图1 三组大鼠肠黏膜病理改变。注:a图为对照组,显示肠黏膜结构正常,未见明显损伤;b图为PDTC组,显示肠黏膜结构紊乱、炎症细胞浸润、肠壁水肿;c图为SAP组,显示肠黏膜糜烂坏死,绒毛形态不规则,炎症细胞浸润;PDTC:二硫代氨基甲酸吡咯烷(pyrrolidine dithiocarbamate);SAP:重症急性胰腺炎(severe acute pancreatitis)(HE染色 ×200)
图2 三组大鼠Occludin蛋白表达。注:a图为对照组,显示Occludin蛋白沿肠黏膜上皮细胞分布,呈很强的棕褐色线状信号;b图为PDTC组,显示Occludin的定位与对照组没有明显区别,但棕褐色阳性信号减弱;c图为SAP组,显示Occludin阳性细胞数较其它两组明显减少;PDTC:二硫代氨基甲酸吡咯烷(pyrrolidine dithiocarbamate);SAP:重症急性胰腺炎(severe acute pancreatitis)(免疫组织化学染色 ×200)
1
Huang W, Windsor JA. Fulminant or early severe acute pancreatitis is over-looked by classifications of severity[J]. Crit Care Med, 2017, 45 (7): e744-e745.
2
曹关义,李泉,朱红岩,等. 脉波轮廓温度稀释连续心排量测量技术在重症急性胰腺炎合并急性呼吸道窘迫综合征患者液体管理中的应用[J/CD]. 中华危重症医学杂志(电子版),2016,9(2):96-100.
3
Gomatos IP, Halloran CM, Ghaneh P, et al. Outcomes from minimal access retroperitoneal and open pancreatic necrosectomy in 394 patients with necrotizing pancreatitis[J]. Ann Surg, 2016, 263 (5): 992-1001.
4
Deng W, Abliz A, Xu S, et al. Severity of pancreatitis-associated intestinal mucosal barrier injury is reduced following treatment with the NADPH oxidase inhibitor apocynin[J]. Mol Med Rep, 2016, 14 (4): 3525-3534.
5
Yao P, Cui M, Li Y, et al. Effects of rhubarb on intestinal flora and toll-like receptors of intestinal mucosa in rats with severe acute pancreatitis[J]. Pancreas, 2015, 44 (5): 799-804.
6
Xu GF, Guo M, Tian ZQ, et al. Increased of serum high-mobility group box chromosomal protein 1 correlated with intestinalmucosal barrier injury in patients with severe acute pancreatitis[J]. World J Emerg Surg, 2014 (9): 61.
7
Zhang XP, Jiang J, Yu YP, et al. Effect of Danshen on apoptosis and NF-κB protein expression of the intestinal mucosa of rats with severe acute pancreatitis or obstructive jaundice[J]. Hepatobiliary Pancreat Dis Int, 2010, 9 (5): 537-546.
8
Kong W, Huang C, Tang Y, et al. Effect of Bacillus subtilis on Aeromonas hydrophila induced intestinal mucosal barrier function damage and inflammation in grass carp[J]. Sci Rep, 2017, 7 (1): 1588.
9
Watari A, Sakamoto Y, Hisaie K, et al. Rebeccamycin attenuates TNF-α-induced intestinal epithelial barrier dysfunction by inhibiting myosin light chain kinase production[J]. Cell Physiol Biochem, 2017, 41 (5): 1924-1934.
10
Li W, Sun K, Ji Y, et al. Glycine regulates expression and distribution of claudin-7 and ZO-3 proteins in intestinal porcine epithelial cells[J]. J Nutr, 2016, 146 (5): 964-969.
11
Wang J, Li Y, Qi Y. Effect of glutamine-enriched nutritional support on intestinal mucosal barrier function, MMP-2, MMP-9 and immune function in patients with advanced gastric cancer during perioperative chemotherapy[J]. Oncol Lett, 2017, 14 (3): 3606-3610.
12
Tornai T, Palyu E, Vitalis Z, et al. Gut barrier failure biomarkers are associated with poor disease outcome in patients with primary sclerosing cholangitis[J]. World J Gastroenterol, 2017, 23 (29): 5412-5421.
13
Liu H, Liu Z, Zhao S, et al. Effect of BML-111 on the intestinal mucosal barrier in sepsis and its mechanism of action[J]. Mol Med Rep, 2015, 12 (2): 3101-3106.
14
胡才宝,严静,李莉,等. 脓毒症大鼠不同时期炎症因子水平与心功能关系的研究[J/CD]. 中华危重症医学杂志(电子版),2014,7(3):166-171.
15
Luo H, Guo P, Zhou Q. Role of TLR4/NF-κB in damage to intestinal mucosa barrier function and bacterial translocation in rats exposed to hypoxia[J]. PLoS One, 2012, 7 (10): e46291.
16
Nguyen HT, Dalmasso G, Müller S, et al. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs inintestinal epithelial cells to reduce autophagy[J]. Gastroenterology, 2014, 146 (2): 508-519.
17
Lee HW, Lee CG, Rhee DK, et al. Sinigrin inhibits production of inflammatory mediators by suppressing NF-κB/MAPK pathways or NLRP3 inflammasome activation in macrophages[J]. Int Immunopharmacol, 2017 (45): 163-173.
18
Du X, Chen W, Wang Y, et al. Therapeutic efficacy of carboxyamidotriazole on 2,6-trinitrobenzene sulfonic acid-induced model is associated with the inhibition of NLRP3 inflammasome and NF-κB activation[J]. Int Immunopharmacol, 2017 (45): 16-25.
19
牛坚,王月,刘斌,等. 小分子干扰RNA沉默T细胞免疫球蛋白黏蛋白分子3表达对暴发性肝衰竭小鼠Kupffer细胞分泌细胞因子的影响[J/CD]. 中华危重症医学杂志(电子版),2015,8(4):217-223.
20
Guo H, Deng H, Cui H, et al. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney[J]. Oncotarget, 2015, 6 (30): 28607-28620.
[1] 陆婷, 范晴敏, 王洁, 万晓静, 许春芳, 董凤林. 超声引导下经皮穿刺置管引流对重症急性胰腺炎的疗效及应用时机的选择[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 511-516.
[2] 党军强, 杨雁灵, 汪庆强, 尚琳, 朱磊, 项红军. 主动经皮穿刺引流治疗重症急性胰腺炎并发急性坏死物积聚的疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 671-674.
[3] 王刚, 李涛, 刘玉芳. 胃癌根治手术后行抗菌药物治疗对患者肠道细菌移位及肠黏膜屏障功能的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 141-145.
[4] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[5] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[6] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[7] 陈向军, 王在强, 王博荣, 王莉, 方芳, 金发光, 王光辉. PM2.5通过激活颗粒酶B/IL-18信号通路促进炎症因子表达[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 207-211.
[8] 戴伟川, 郭协力, 方仲宁, 蔡文华, 洪天生, 田夏阳. 显微镜下周围神经松解术治疗腰椎间盘突出症术后残余神经症状的疗效分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 84-90.
[9] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[10] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[11] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[12] 李秀玲, 连少锋, 荣刘涛, 李登峰, 饶蕴玉. 利巴韦林联合复方嗜酸乳杆菌治疗轮状病毒肠炎患儿的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 369-372.
[13] 买买提·依斯热依力, 尹强, 尹海龙, 李治建, 董雨微, 王永康, 克力木·阿不都热依木, 阿吉艾克拜尔·艾萨. 罗乐胃蜜膏抑制酸刺激诱导食管上皮细胞炎症发生的机制研究[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(03): 137-142.
[14] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要