切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2017, Vol. 10 ›› Issue (04) : 242 -245. doi: 10.3877/cma.j.issn.1674-6880.2017.04.006

所属专题: 文献

论著

空气细颗粒物(PM2.5)对心血管疾病住院患者炎症因子的影响
贺晓楠1, 张城2, 曹璇2, 陈宇2,()   
  1. 1. 100029 北京,首都医科大学附属北京安贞医院急诊危重症中心
    2. 130031 长春,吉林大学中日联谊医院心内科
  • 收稿日期:2017-06-27 出版日期:2017-08-01
  • 通信作者: 陈宇
  • 基金资助:
    吉林省级产业创新专项资金项目(2016C041); 北京中医药科技发展资金项目青年研究(QN2016-2); 首都医科大学基础-临床科研合作基金项目(17JL72)

Effect of air fine particulate matter (PM2.5) on inflammation factors of inpatients with cardiovascular disease

Xiaonan He1, Cheng Zhang2, Xuan Cao2, Yu Chen2,()   

  1. 1. Emergency Crisis Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
    2. Department of Cardiology, China-Japan Friendship Hospital Affiliated Jilin University, Changchun 130031, China
  • Received:2017-06-27 Published:2017-08-01
  • Corresponding author: Yu Chen
  • About author:
    Corresponding author: Chen Yu, Email: chenyu329@sina.com
引用本文:

贺晓楠, 张城, 曹璇, 陈宇. 空气细颗粒物(PM2.5)对心血管疾病住院患者炎症因子的影响[J/OL]. 中华危重症医学杂志(电子版), 2017, 10(04): 242-245.

Xiaonan He, Cheng Zhang, Xuan Cao, Yu Chen. Effect of air fine particulate matter (PM2.5) on inflammation factors of inpatients with cardiovascular disease[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2017, 10(04): 242-245.

目的

探讨空气细颗粒物PM2.5对心血管疾病住院患者相关炎症因子的影响。

方法

纳入2015年10月至2016年4月吉林大学中日联谊医院住院的心血管疾病患者共计92名,同期记录入院当天中国环境保护部发表的PM2.5浓度值数据,根据PM2.5浓度值将所有患者分成优良组(0 < PM2.5 ≤ 75 μg/m2,20例),轻度组(75 μg/m2 < PM2.5 ≤ 115 μg/m2,20例)及中重度组(PM2.5 > 115μg/m2,52例)。记录所有患者的一般资料及入院时患者的中性粒细胞计数(NEUT)、血小板计数(PLT)计数。采用酶联免疫吸附试验测定血清白细胞介素8(IL-8)以及细胞间黏附分子1(ICAM-1)的表达水平。采用Spearman相关分析PM2.5与PLT、IL-8、ICAM-1的相关性。

结果

三组心血管疾病住院患者NEUT间比较,差异无统计学意义(Z = 1.312,P > 0.05),PLT、IL-8以及ICAM-1水平比较,差异均有统计学意义(Z = 4.541、3.084、5.065,P均< 0.05),且PLT [237(181,275)× 109/L、212(170,241)× 109/L、184(140,213)× 109/L]及ICAM-1 [1 706(900,2 999)、683(381,960)、262(163,341)ng/L]水平中重度组及轻度组均明显高于优良组,且中重度组更高(P均< 0.017),而IL-8 [47(20,52)、60(45,77)、147(89,199)ng/L]水平仅优良组及轻度组均显著低于中重度组患者(P均< 0.001)。Spearman相关分析发现,PM2.5与PLT呈负相关(r = -0.290,P = 0.018),与IL-8、ICAM-1呈正相关(r = 0.603,P = 0.043;r = 0.766,P = 0.013)。

结论

随着PM2.5浓度的增加,PLT水平明显上升,血清IL-8以及ICAM-1的表达水平亦越高。

Objective

To investigate the effect of air fine particulate matter (PM2.5) on inflammation factors of inpatients with cardiovascular disease.

Methods

Totally 92 patients with cardiovascular disease admitted to the China-Japan Friendship Hospital Affiliated Jilin University from October 2015 to April 2016 were enrolled in this study. The data of PM2.5 density published by China's Ministry of Environmental Protection on the day of admission was recorded. The patients were divided into the good group (0 < PM2.5 ≤ 75 μg/m2, 20 cases), the light group (75 μg/m2 < PM2.5 ≤ 115 μg/m2, 20 cases), and the moderate-severe group (PM2.5 > 115 μg/m2, 52 cases) according to the concentration of PM2.5. The general information, neutrophil count (NEUT) and platelet count (PLT) were recorded on the day of admission. The levels of serum interleukin-8 (IL-8) and intercellular adhesion molecule-1(ICAM-1) were detected by enzyme-linked immunesorbent assay. The relationship between PM2.5 concentration and PLT, IL-8, ICAM-1 were analyzed by Spearman correlation analysis.

Results

There was no significant difference in the NEUT among these three groups (Z = 1.312, P > 0.05), and the levels of PLT, IL-8 and ICAM-1 all showed significant differences among them (Z = 4.541, 3.084, 5.065, all P < 0.05). In addition, the PLT [237 (181, 275) × 109/L, 212 (170, 241) × 109/L, 184 (140, 213) × 109/L) and ICAM-1 [1 706 (900, 2 999), 683 (381, 960), 262 (163, 341) ng/L] in the moderate-severe group and light group were higher than those in the good group, and were highest in the moderate-severe group (all P < 0.017). However, the IL-8 levels [47 (20, 52), 60 (45, 77), 147 (89, 199) ng/L] in the good group and light group were both lower than that in the moderate-severe group (all P < 0.001). The Spearman correlation analysis indicated that PM2.5 concentration was negatively correlated with PLT (r = -0.290, P = 0.018), and was positively correlated with IL-8 and ICAM-1 (r = 0.603, P = 0.043; r = 0.766, P = 0.013).

Conclusion

With the increased concentration of PM2.5, the levels of PLT, IL-8 and ICAM-1 in inpatients with cardiovascular disease also increased significantly.

表1 三组不同PM2.5浓度心血管疾病患者相关炎症因子的比较[MP25P75)]
1
Oikonomou E, Lazaros G, Georgiopoulos G, et al. Environment and cardiovascular disease: rationale of the Corinthia study[J]. Hellenic J Cardiol, 2016, 57 (3): 194-197.
2
Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease[J]. Nat Rev Cardiol, 2015, 12 (11): 627-642.
3
Gold DR, Samet JM. Air pollution, climate, and heart disease[J]. Circulation, 2013, 128 (21): e411-e414.
4
Münzel T, Sorensen M, Gori T, et al. Environmental stressors and cardio-metabolic disease: part Ⅱ-mechanistic insights[J]. Eur Heart J, 2017, 38 (8): 557-564.
5
Hicken MT, Adar SD, Hajat A, et al. Air pollution, cardiovascular outcomes, and social disadvantage: the multi-ethnic study of atherosclerosis[J]. Epidemiology, 2016, 27 (1): 42-50.
6
Stansfeld SA. Noise effects on health in the context of air pollution exposure[J]. Int J Environ Res Public Health, 2015, 12 (10): 12735-12760.
7
Brook RD, Rajagopalan S, Pope CA 3rd, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association[J]. Circulation, 2010, 121 (21): 2331-2378.
8
Tablin F, den Hartigh LJ, Aung HH, et al. Seasonal influences on CAPs exposures: differential responses in platelet activation, serum cytokines and xenobiotic gene expression[J]. Inhal Toxicol, 2012, 24 (8): 506-517.
9
Yin Z, Xu HJ, Yao XL, et al. Ambient fine particles (PM2.5) attenuate collagen-induced platelet activation through interference of the PLCγ2/Akt/GSK3β signaling pathway[J]. Environ Toxicol, 2017, 32 (2): 530-540.
10
Wilson DW, Aung HH, Lame MW, et al. Exposure of mice to concentrated ambient particulate matter results in platelet and systemic cytokine activation[J]. Inhal Toxicol, 2010, 22 (4): 267-276.
11
Takizawa H, Abe S, Ohtoshi T, et al. Diesel exhaust particles up-regulate expression of intercellular adhesion molecule-1 (ICAM-1) in human bronchial epithelial cells[J]. Clin Exp Immunol, 2000, 120 (2): 356-362.
12
Cho HR, Son Y, Kim SM, et al. 7α-Hydroxycholesterol induces monocyte/macrophage cell expression of interleukin-8 via C5a receptor[J]. PLoS One, 2017, 12 (3): e0173749.
13
Nabi XH, Ma CY, Manaer T, et al. Anti-atherosclerotic effect of traditional fermented cheese whey in atherosclerotic rabbits and identification of probiotics[J]. BMC Complement Altern Med, 2016 (16): 309.
14
Springer TA. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration[J]. Annu Rev Physiol, 1995 (57): 827-872.
15
Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated[J]. Nat Rev Immunol, 2007, 7 (9): 678-689.
16
Laudanna C, Alon R. Right on the spot. Chemokine triggering of integrin-mediated arrest of rolling leukocytes[J]. Thromb Haemost, 2006, 95 (1): 5-11.
17
Bullard DC. Adhesion molecules in inflammatory diseases: insights from knockout mice[J]. Immunol Res, 2002, 26 (1-3): 27-33.
18
Hoffman M, Blum A, Baruch R, et al. Leukocytes and coronary heart disease[J]. Atherosclerosis, 2004, 172 (1): 1-6.
19
Mosevoll KA, Lindas R, Tvedt TH, et al. Altered plasma levels of cytokines, soluble adhesion molecules and matrix metalloproteases in venous thrombosis[J]. Thromb Res, 2015, 136 (1): 30-39.
20
周发展,武君,张春玲,等. 替罗非班应用于急诊经皮冠状动脉介入治疗对急性心肌梗死患者心肌灌注和内皮功能的影响[J/CD]. 中华危重症医学杂志(电子版),2016,9(1):3-8.
21
Qiao L, Cai J, Wang H, et al. PM2.5 constituents and hospital emergency-room visits in Shanghai, China[J]. Environ Sci Technol, 2014, 48 (17): 10406-10414.
22
Ma Z, Hu X, Sayer AM, et al. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004-2013[J]. Environ Health Perspect, 2016, 124 (2): 184-192.
23
You W, Zang Z, Zhang L, et al. Estimating national-scale ground-level PM2.5 concentration in China using geographically weighted regression based on MODIS and MISR AOD[J]. Environ Sci Pollut Res Int, 2016, 23 (9): 8327-8338.
[1] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[2] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[3] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[4] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[5] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[6] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[7] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[8] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[9] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[10] 宋新雅, 苏小慧, 卞士柱, 丁小涵. 吸入性药物治疗肺动脉高压的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 831-835.
[11] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[12] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[13] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[14] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[15] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
阅读次数
全文


摘要