切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2016, Vol. 09 ›› Issue (03) : 145 -148. doi: 10.3877/cma.j.issn.1674-6880.2016.03.001

所属专题: 文献

论著

瑞芬太尼对脓毒症诱导急性呼吸窘迫综合征大鼠的保护作用研究
周锋1, 张颖2,()   
  1. 1. 430071 湖北武汉,武汉大学中南医院内分泌科
    2. 430071 湖北武汉,武汉大学中南医院重症医学科
  • 收稿日期:2015-10-16 出版日期:2016-06-01
  • 通信作者: 张颖
  • 基金资助:
    中华医学临床医学科研专项项目(14030300567); 武汉大学自主科研青年教师项目(2042014kf0136); 武汉大学中南医院青年基金项目(201309)

Protective effects of remifentanil on sepsis induced acute respiratory distress syndrome in rats

Feng Zhou1, Ying Zhang2,()   

  1. 1. Department of Endocrinology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
    2. Department of Intensive Care Unit, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
  • Received:2015-10-16 Published:2016-06-01
  • Corresponding author: Ying Zhang
  • About author:
    Corresponding author: Zhang Ying, Email:
引用本文:

周锋, 张颖. 瑞芬太尼对脓毒症诱导急性呼吸窘迫综合征大鼠的保护作用研究[J]. 中华危重症医学杂志(电子版), 2016, 09(03): 145-148.

Feng Zhou, Ying Zhang. Protective effects of remifentanil on sepsis induced acute respiratory distress syndrome in rats[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2016, 09(03): 145-148.

目的

观察瑞芬太尼对脓毒症诱导产生急性呼吸窘迫综合征(ARDS)大鼠的保护作用及机制。

方法

将40只SD大鼠分为对照组、ARDS组、瑞芬太尼对照组及瑞芬太尼治疗组,每组各10只。ARDS组与瑞芬太尼治疗组大鼠经股静脉注射7.5 mg/kg脂多糖以制备ARDS大鼠模型,对照组与瑞芬太尼对照组大鼠予以等体积生理盐水;而后瑞芬太尼对照组及治疗组在注射6 h后给予静脉注射瑞芬太尼0.04 μg/kg,ARDS组予以等体积生理盐水。所有大鼠于脂多糖注射后8 h处死。取右肺予以病理学检测,取左肺上叶进行髓过氧化物酶(MPO)水平、肺湿/干重(W/D)及肿瘤坏死因子α(TNF-α),白细胞介素1β(IL-1β)和IL-6水平的比较,并对支气管肺泡灌洗液(BALF)中蛋白含量及细胞计数进行检测。

结果

静脉注射脂多糖8 h后,肺组织病理切片提示肺内大量炎性细胞浸润,而给予瑞芬太尼处理的动物上述病理学改变明显减轻。ARDS组大鼠MPO水平[(1.98 ± 0.14)U/g vs.(0.89 ± 0.12)U/g]、肺W/D比值[(8.51 ± 0.13)vs.(3.83 ± 0.08)]、TNF-α[(1 141 ± 114)ng/L vs.(186 ± 8)ng/L]、IL-1β[(1 866 ± 291)ng/L vs.(201 ± 30)ng/L]、IL-6[(528 ± 61)ng/L vs.(246 ± 35)ng/L]、BALF中蛋白含量[(0.96 ± 0.02)g/L vs.(0.29 ± 0.01)g/L]及细胞计数[(11.57 ± 1.04)×108/ml vs.(1.39 ± 0.29)× 108/ml]均明显高于对照组(P均<0.05),而瑞芬太尼治疗组大鼠MPO水平为(1.01 ± 0.12)U/g,肺W/D比值4.05 ± 0.12,TNF-α为(573.8 ± 49.6)ng/L,IL-1β为(769.5 ± 49.8)ng/L,IL-6为(365.5 ± 35.8)ng/L,BALF中蛋白含量(0.53 ± 0.02)g/L,细胞计数为(7.57 ± 0.66)× 108/ml,上述指标均明显低于ARDS组(P均<0.05)。

结论

瑞芬太尼对脓毒症诱导的ARDS大鼠具有保护作用。

Objective

To investigate the effects of remifentanil on sepsis induced acute respiratory distress syndrome (ARDS) in rats.

Methods

A total of 40 SD rats were randomly divided into four groups: control group, ARDS group, remifentanil control group, and remifentanil group. ARDS model was induced by administering 7.5 mg/kg lipopolysaccharide (LPS) via vein in the ARDS group and remifentanil group, and rats in the control group and remifentanil control group were injected with the same volume of saline. Then the rats in the remifentanil control group and remifentanil group were subcutaneously treated with 0.04 μg/kg remifentanil 6 hours after LPS administration. All rats were sacrificed at 8 h after LPS administration. Right lung tissue were used to examine lung pathology changes, the myeloperoxidase (MPO), wet/dry (W/D) ratio, tumor necrosis factor-α(TNF-α), interleukin-1β (IL-1β) and IL-6 levels in left upper lung were examined and compared. Moreover, protein content and cell count in bronchoalveolar lavage fluid (BALF) were detected.

Results

A large number of inflammatory cells infiltration at 8 h after LPS administration in the ARDS group and remifentanil control group, and above pathology changes were significantly alleviated in the remifentanil group. The levels of MPO [(1.98 ± 0.14) U/g vs. (0.89 ± 0.12) U/g], W/D ratio [(8.51 ± 0.13) vs. (3.83 ± 0.08)], TNF-α [(1 141 ± 114) ng/L vs. (186 ± 8) ng/L], IL-1β [(1 866 ± 291) ng/L vs. (201 ± 30) ng/L], IL-6 [(528 ± 61) ng/L vs. (246 ± 35) ng/L], protein content [(0.96 ± 0.02)g/L vs. (0.29 ± 0.01) g/L] and cell count [(11.57 ± 1.04) × 108/ml vs. (1.39 ± 0.29) × 108/ml] in the ARDS group were higher than those in the control group (all P<0.05). In the remifentanil group, the MPO level, W/D ratio, TNF-α, IL-1β, IL-6, protein content and cell count were (1.01 ± 0.12)U/g, 4.05 ± 0.12, (573.8 ± 49.6) ng/L, (769.5 ± 49.8) ng/L, (365.5 ± 35.8) ng/L, (0.53 ± 0.02) g/L and (7.57 ± 0.66) × 108/ml, respectively. Above parameters were all lower than those in the ARDS group (all P<0.05).

Conclusion

Remifentanil could decrease the inflammation response and prevent the development of ARDS induced by LPS which plays a protective role in rats.

图1 各组大鼠肺脏病理学改变图。注:a~d图分别为对照组、急性呼吸窘迫综合症组、瑞芬太尼对照组、瑞芬太尼治疗组(HE ×400)
表1 各组ARDS大鼠肺组织MPO和肺湿干比重的变化(±s
表2 各组ARDS大鼠肺泡灌洗液中TNF-α、IL-1β、IL-6比较ARDS大鼠(ng/L,±s
表3 各组ARDS大鼠肺泡灌洗液中蛋白含量和细胞计数比较(±s
[1]
Sharifov OF, Xu X, Gaggar A, et al.Anti-inflammatory mechanisms of apolipoprotein A-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis[J].PLoS One, 2013, 8 (5): e64486.
[2]
Matthay MA, Ware LB, Zimmerman GA.The acute respiratory distress syndrome[J].J Clin Invest, 2012, 122 (8): 2731-2740.
[3]
Takaoka Y, Goto S, Nakano T, et al.Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopoly-saccharide (LPS)-induced, sepsis-related severe acute lung injury in mice[J].Sci Rep, 2014 (4): 5204.
[4]
Chen H, Bai C, Wang X.The value of the lipopoly-saccharide-induced acute lung injury model in respiratory medicine[J].Expert Rev Respir Med, 2010, 4 (6): 773-783.
[5]
Mason P.Remifentanil[J]. Intensive Crit Care Nurs, 2002, 18 (6): 355-357.
[6]
Zongze Z, Jia Z, Chang C, et al. Protective effects of remifentanil on septic mice[J]. Mol Biol Rep, 2010, 37 (6): 2803-2808.
[7]
Sacerdote P, Gaspani L, Rossoni G, et al. Effect of the opioid remifentanil on cellular immune response in the rat[J]. Int Immunopharmacol, 2001, 1 (4): 713-719.
[8]
Hyejin J, Mei L, Seongheon L, et al. Remifentanil attenuates human neutrophils activation induced by lipopolysaccharide[J]. Immunopharmacol Immunotoxicol, 2013, 35 (2): 264-271.
[9]
Murakami K, McGuire R, Cox RA, et al. Heparin nebulization attenuates acute lung injury in sepsis following smoke inhalation in sheep[J]. Shock, 2002, 18 (3): 236-241.
[10]
Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response[J].Anal Biochem, 1972, 48 (2): 422-427.
[11]
Huhle R, Guldner A, Spieth PM, et al.Characterization of respiratory patterns during assisted mechanical ventilation in experimental ARDS[J].Biomed Tech (Berl), 2013: pii.
[12]
Wada T, Jesmin S, Gando S, et al.The role of angio-genic factors and their soluble receptors in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with critical illness[J].J Inflamm (Lond), 2013, 10 (1): 6.
[13]
Mittal N, Sanyal SN.In vivo effect of surfactant on inflammatory cytokines during endotoxin-induced lung injury in rodents[J].J Immunotoxicol, 2011, 8 (4): 274-283.
[14]
Zeng Z, Gong H, Li Y, et al.Upregulation of miR-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury[J].Exp Lung Res, 2013, 39 (7): 275-282.
[15]
Minamino T, Komuro I.Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury[J].J Clin Invest, 2006, 116 (9): 2316-2319.
[16]
de Pablo R, Monserrat J, Reyes E, et al.Sepsis-induced acute respiratory distress syndrome with fatal outcome is associated to increased serum transforming growth factor beta-1 levels[J].Eur J Intern Med, 2012, 23 (4): 358-362.
[17]
Li T, Luo N, Du L, et al.Early and marked up-regulation of TNF-alpha in acute respiratory distress syndrome after cardiopulmonary bypass[J].Front Med, 2012, 6 (3): 296-301.
[18]
Goldman JL, Sammani S, Kempf C, et al.Pleiotropic effects of interleukin-6 in a "two-hit" murine model of acute respiratory distress syndrome[J]. Pulm Circ, 2014, 4 (2): 280-288.
[19]
Hopkins SJ.The pathophysiological role of cytokines[J].Leg Med (Tokyo), 2003, 5 Suppl 1: S45-57.
[20]
Wan LM, Tan L, Wang ZR, et al.Preventive and therapeutic effects of Danhong injection on lipopolysaccharide induced acute lung injury in mice[J].J Ethnopharmacol, 2013, 149 (1): 352-359.
[1] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[2] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[5] 魏强, 张明祥, 陈强谱, 孙宝房. 增味小承气汤对梗阻性黄疸大鼠胃肠道动力的影响[J]. 中华普通外科学文献(电子版), 2023, 17(04): 267-270.
[6] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[7] 于广东, 纪月珑, 李向南, 邓龙生. 纳布啡联合瑞芬太尼在腹腔镜完全腹膜外腹股沟疝手术术后应用效果分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 463-467.
[8] 陈静, 张春明, 周斌, 吴明明. 甲苯磺酸瑞马唑仑联合瑞芬太尼全身麻醉对胸腔镜肺叶切除患者术后应激反应及血清PAF、γ干扰素的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 554-556.
[9] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要