切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2016, Vol. 09 ›› Issue (03) : 145 -148. doi: 10.3877/cma.j.issn.1674-6880.2016.03.001

所属专题: 文献

论著

瑞芬太尼对脓毒症诱导急性呼吸窘迫综合征大鼠的保护作用研究
周锋1, 张颖2,()   
  1. 1. 430071 湖北武汉,武汉大学中南医院内分泌科
    2. 430071 湖北武汉,武汉大学中南医院重症医学科
  • 收稿日期:2015-10-16 出版日期:2016-06-01
  • 通信作者: 张颖
  • 基金资助:
    中华医学临床医学科研专项项目(14030300567); 武汉大学自主科研青年教师项目(2042014kf0136); 武汉大学中南医院青年基金项目(201309)

Protective effects of remifentanil on sepsis induced acute respiratory distress syndrome in rats

Feng Zhou1, Ying Zhang2,()   

  1. 1. Department of Endocrinology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
    2. Department of Intensive Care Unit, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
  • Received:2015-10-16 Published:2016-06-01
  • Corresponding author: Ying Zhang
  • About author:
    Corresponding author: Zhang Ying, Email:
引用本文:

周锋, 张颖. 瑞芬太尼对脓毒症诱导急性呼吸窘迫综合征大鼠的保护作用研究[J/OL]. 中华危重症医学杂志(电子版), 2016, 09(03): 145-148.

Feng Zhou, Ying Zhang. Protective effects of remifentanil on sepsis induced acute respiratory distress syndrome in rats[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2016, 09(03): 145-148.

目的

观察瑞芬太尼对脓毒症诱导产生急性呼吸窘迫综合征(ARDS)大鼠的保护作用及机制。

方法

将40只SD大鼠分为对照组、ARDS组、瑞芬太尼对照组及瑞芬太尼治疗组,每组各10只。ARDS组与瑞芬太尼治疗组大鼠经股静脉注射7.5 mg/kg脂多糖以制备ARDS大鼠模型,对照组与瑞芬太尼对照组大鼠予以等体积生理盐水;而后瑞芬太尼对照组及治疗组在注射6 h后给予静脉注射瑞芬太尼0.04 μg/kg,ARDS组予以等体积生理盐水。所有大鼠于脂多糖注射后8 h处死。取右肺予以病理学检测,取左肺上叶进行髓过氧化物酶(MPO)水平、肺湿/干重(W/D)及肿瘤坏死因子α(TNF-α),白细胞介素1β(IL-1β)和IL-6水平的比较,并对支气管肺泡灌洗液(BALF)中蛋白含量及细胞计数进行检测。

结果

静脉注射脂多糖8 h后,肺组织病理切片提示肺内大量炎性细胞浸润,而给予瑞芬太尼处理的动物上述病理学改变明显减轻。ARDS组大鼠MPO水平[(1.98 ± 0.14)U/g vs.(0.89 ± 0.12)U/g]、肺W/D比值[(8.51 ± 0.13)vs.(3.83 ± 0.08)]、TNF-α[(1 141 ± 114)ng/L vs.(186 ± 8)ng/L]、IL-1β[(1 866 ± 291)ng/L vs.(201 ± 30)ng/L]、IL-6[(528 ± 61)ng/L vs.(246 ± 35)ng/L]、BALF中蛋白含量[(0.96 ± 0.02)g/L vs.(0.29 ± 0.01)g/L]及细胞计数[(11.57 ± 1.04)×108/ml vs.(1.39 ± 0.29)× 108/ml]均明显高于对照组(P均<0.05),而瑞芬太尼治疗组大鼠MPO水平为(1.01 ± 0.12)U/g,肺W/D比值4.05 ± 0.12,TNF-α为(573.8 ± 49.6)ng/L,IL-1β为(769.5 ± 49.8)ng/L,IL-6为(365.5 ± 35.8)ng/L,BALF中蛋白含量(0.53 ± 0.02)g/L,细胞计数为(7.57 ± 0.66)× 108/ml,上述指标均明显低于ARDS组(P均<0.05)。

结论

瑞芬太尼对脓毒症诱导的ARDS大鼠具有保护作用。

Objective

To investigate the effects of remifentanil on sepsis induced acute respiratory distress syndrome (ARDS) in rats.

Methods

A total of 40 SD rats were randomly divided into four groups: control group, ARDS group, remifentanil control group, and remifentanil group. ARDS model was induced by administering 7.5 mg/kg lipopolysaccharide (LPS) via vein in the ARDS group and remifentanil group, and rats in the control group and remifentanil control group were injected with the same volume of saline. Then the rats in the remifentanil control group and remifentanil group were subcutaneously treated with 0.04 μg/kg remifentanil 6 hours after LPS administration. All rats were sacrificed at 8 h after LPS administration. Right lung tissue were used to examine lung pathology changes, the myeloperoxidase (MPO), wet/dry (W/D) ratio, tumor necrosis factor-α(TNF-α), interleukin-1β (IL-1β) and IL-6 levels in left upper lung were examined and compared. Moreover, protein content and cell count in bronchoalveolar lavage fluid (BALF) were detected.

Results

A large number of inflammatory cells infiltration at 8 h after LPS administration in the ARDS group and remifentanil control group, and above pathology changes were significantly alleviated in the remifentanil group. The levels of MPO [(1.98 ± 0.14) U/g vs. (0.89 ± 0.12) U/g], W/D ratio [(8.51 ± 0.13) vs. (3.83 ± 0.08)], TNF-α [(1 141 ± 114) ng/L vs. (186 ± 8) ng/L], IL-1β [(1 866 ± 291) ng/L vs. (201 ± 30) ng/L], IL-6 [(528 ± 61) ng/L vs. (246 ± 35) ng/L], protein content [(0.96 ± 0.02)g/L vs. (0.29 ± 0.01) g/L] and cell count [(11.57 ± 1.04) × 108/ml vs. (1.39 ± 0.29) × 108/ml] in the ARDS group were higher than those in the control group (all P<0.05). In the remifentanil group, the MPO level, W/D ratio, TNF-α, IL-1β, IL-6, protein content and cell count were (1.01 ± 0.12)U/g, 4.05 ± 0.12, (573.8 ± 49.6) ng/L, (769.5 ± 49.8) ng/L, (365.5 ± 35.8) ng/L, (0.53 ± 0.02) g/L and (7.57 ± 0.66) × 108/ml, respectively. Above parameters were all lower than those in the ARDS group (all P<0.05).

Conclusion

Remifentanil could decrease the inflammation response and prevent the development of ARDS induced by LPS which plays a protective role in rats.

图1 各组大鼠肺脏病理学改变图。注:a~d图分别为对照组、急性呼吸窘迫综合症组、瑞芬太尼对照组、瑞芬太尼治疗组(HE ×400)
表1 各组ARDS大鼠肺组织MPO和肺湿干比重的变化(±s
表2 各组ARDS大鼠肺泡灌洗液中TNF-α、IL-1β、IL-6比较ARDS大鼠(ng/L,±s
表3 各组ARDS大鼠肺泡灌洗液中蛋白含量和细胞计数比较(±s
[1]
Sharifov OF, Xu X, Gaggar A, et al.Anti-inflammatory mechanisms of apolipoprotein A-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis[J].PLoS One, 2013, 8 (5): e64486.
[2]
Matthay MA, Ware LB, Zimmerman GA.The acute respiratory distress syndrome[J].J Clin Invest, 2012, 122 (8): 2731-2740.
[3]
Takaoka Y, Goto S, Nakano T, et al.Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopoly-saccharide (LPS)-induced, sepsis-related severe acute lung injury in mice[J].Sci Rep, 2014 (4): 5204.
[4]
Chen H, Bai C, Wang X.The value of the lipopoly-saccharide-induced acute lung injury model in respiratory medicine[J].Expert Rev Respir Med, 2010, 4 (6): 773-783.
[5]
Mason P.Remifentanil[J]. Intensive Crit Care Nurs, 2002, 18 (6): 355-357.
[6]
Zongze Z, Jia Z, Chang C, et al. Protective effects of remifentanil on septic mice[J]. Mol Biol Rep, 2010, 37 (6): 2803-2808.
[7]
Sacerdote P, Gaspani L, Rossoni G, et al. Effect of the opioid remifentanil on cellular immune response in the rat[J]. Int Immunopharmacol, 2001, 1 (4): 713-719.
[8]
Hyejin J, Mei L, Seongheon L, et al. Remifentanil attenuates human neutrophils activation induced by lipopolysaccharide[J]. Immunopharmacol Immunotoxicol, 2013, 35 (2): 264-271.
[9]
Murakami K, McGuire R, Cox RA, et al. Heparin nebulization attenuates acute lung injury in sepsis following smoke inhalation in sheep[J]. Shock, 2002, 18 (3): 236-241.
[10]
Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response[J].Anal Biochem, 1972, 48 (2): 422-427.
[11]
Huhle R, Guldner A, Spieth PM, et al.Characterization of respiratory patterns during assisted mechanical ventilation in experimental ARDS[J].Biomed Tech (Berl), 2013: pii.
[12]
Wada T, Jesmin S, Gando S, et al.The role of angio-genic factors and their soluble receptors in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with critical illness[J].J Inflamm (Lond), 2013, 10 (1): 6.
[13]
Mittal N, Sanyal SN.In vivo effect of surfactant on inflammatory cytokines during endotoxin-induced lung injury in rodents[J].J Immunotoxicol, 2011, 8 (4): 274-283.
[14]
Zeng Z, Gong H, Li Y, et al.Upregulation of miR-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury[J].Exp Lung Res, 2013, 39 (7): 275-282.
[15]
Minamino T, Komuro I.Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury[J].J Clin Invest, 2006, 116 (9): 2316-2319.
[16]
de Pablo R, Monserrat J, Reyes E, et al.Sepsis-induced acute respiratory distress syndrome with fatal outcome is associated to increased serum transforming growth factor beta-1 levels[J].Eur J Intern Med, 2012, 23 (4): 358-362.
[17]
Li T, Luo N, Du L, et al.Early and marked up-regulation of TNF-alpha in acute respiratory distress syndrome after cardiopulmonary bypass[J].Front Med, 2012, 6 (3): 296-301.
[18]
Goldman JL, Sammani S, Kempf C, et al.Pleiotropic effects of interleukin-6 in a "two-hit" murine model of acute respiratory distress syndrome[J]. Pulm Circ, 2014, 4 (2): 280-288.
[19]
Hopkins SJ.The pathophysiological role of cytokines[J].Leg Med (Tokyo), 2003, 5 Suppl 1: S45-57.
[20]
Wan LM, Tan L, Wang ZR, et al.Preventive and therapeutic effects of Danhong injection on lipopolysaccharide induced acute lung injury in mice[J].J Ethnopharmacol, 2013, 149 (1): 352-359.
[1] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[2] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[3] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[4] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[5] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[6] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[7] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[8] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[9] 刘锦程, 王斌, 张雯, 张明周, 刘禹, 叶东樊, 黄赞胜, 邱凌霄, 卿斌, 王创业, 王南博, 王苹, 郭宇航, 周培花, 程秋霞, 徐智. 肺泡灌洗液RASSF1A及SHOX2甲基化联合径向超声特征对肺结节性质鉴别诊断的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 505-511.
[10] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[11] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[12] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[13] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[14] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[15] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?