| 1 |
Stevens RD, Marshall SA, Cornblath DR, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness[J]. Crit Care Med, 2009, 37 (10 Suppl): S299-S308.
|
| 2 |
Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness[J]. Intensive Care Med, 2020, 46 (4): 637-653.
|
| 3 |
Voiriot G, Oualha M, Pierre A, et al. Chronic critical illness and post-intensive care syndrome: from pathophysiology to clinical challenges[J]. Ann Intensive Care, 2022, 12 (1): 58.
|
| 4 |
Boelens YFN, Melchers M, van Zanten ARH. Poor physical recovery after critical illness: incidence, features, risk factors, pathophysiology, and evidence-based therapies[J]. Curr Opin Crit Care, 2022, 28 (4): 409-416.
|
| 5 |
谢佳佳,沈悦好,刘素彦,等.重症监护病房获得性肌无力康复干预的研究进展[J/OL].中华危重症医学杂志(电子版),2023,16(2):154-158.
|
| 6 |
Fazzini B, Markl T, Costas C, et al. The rate and assessment of muscle wasting during critical illness: a systematic review and meta-analysis[J]. Crit Care, 2023, 27 (1): 2.
|
| 7 |
Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness[J]. JAMA, 2013, 310 (15): 1591-1600.
|
| 8 |
Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9 (9): 1970.
|
| 9 |
Otto A, Patel K. Signalling and the control of skeletal muscle size[J]. Exp Cell Res, 2010, 316 (18): 3059-3066.
|
| 10 |
Li B, Feng L, Wu X, et al. Effects of different modes of exercise on skeletal muscle mass and function and IGF-1 signaling during early aging in mice[J]. J Exp Biol, 2022, 225 (21): jeb244650.
|
| 11 |
Martín AI, Priego T, Moreno-Ruperez A, et al. IGF-1 and IGFBP-3 in inflammatory cachexia[J]. Int J Mol Sci, 2021, 22 (17): 9469.
|
| 12 |
Nystrom G, Pruznak A, Huber D, et al. Local insulin-like growth factor I prevents sepsis-induced muscle atrophy[J]. Metabolism, 2009, 58 (6): 787-797.
|
| 13 |
Zhao Z, Yan K, Guan Q, et al. Mechanism and physical activities in bone-skeletal muscle crosstalk[J]. Front Endocrinol (Lausanne), 2024, 14: 1287972.
|
| 14 |
de Boer MD, Selby A, Atherton P, et al. The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse[J]. J Physiol, 2007, 585 (Pt 1): 241-251.
|
| 15 |
Kitajima Y, Yoshioka K, Suzuki N. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders[J]. J Physiol Sci, 2020, 70 (1): 40.
|
| 16 |
Graham ZA, Lavin KM, O'Bryan SM, et al. Mechanisms of exercise as a preventative measure to muscle wasting[J]. Am J Physiol Cell Physiol, 2021, 321 (1): C40-C57.
|
| 17 |
Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome[J]. Int J Biochem Cell Biol, 2013, 45 (10): 2121-2129.
|
| 18 |
Zanders L, Kny M, Hahn A, et al. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting[J]. J Cachexia Sarcopenia Muscle, 2022, 13 (1): 713-727.
|
| 19 |
Webster JM, Kempen LJAP, Hardy RS, et al. Inflammation and skeletal muscle wasting during cachexia[J]. Front Physiol, 2020 (11): 597675.
|
| 20 |
Agrawal S, Chakole S, Shetty N, et al. Exploring the role of oxidative stress in skeletal muscle atrophy: mechanisms and implications[J]. Cureus, 2023, 15 (7): e42178.
|
| 21 |
Kocaturk NM, Gozuacik D. Crosstalk between mammalian autophagy and the ubiquitin-proteasome system[J]. Front Cell Dev Biol, 2018, 6: 128.
|
| 22 |
Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress[J]. Nat Med, 2007, 13 (5): 619-624.
|
| 23 |
Deretic V. Autophagy in inflammation, infection, and immunometabolism[J]. Immunity, 2021, 54 (3): 437-453.
|
| 24 |
Reglero-Real N, Pérez-Gutiérrez L, Yoshimura A, et al. Autophagy modulates endothelial junctions to restrain neutrophil diapedesis during inflammation[J]. Immunity, 2021, 54 (9): 1989-2004.e9.
|
| 25 |
Vanhorebeek I, Gunst J, Derde S, et al. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients[J]. J Clin Endocrinol Metab, 2011, 96 (4): E633-E645.
|
| 26 |
Cohen S. Role of calpains in promoting desmin filaments depolymerization and muscle atrophy[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867 (10): 118788.
|
| 27 |
Huang Y, Wang G, Peng T. Calpain activation and organ failure in sepsis: molecular insights and therapeutic perspectives[J]. Shock, 2021, 56 (1): 5-15.
|
| 28 |
Hyatt HW, Powers SK. The role of calpains in skeletal muscle remodeling with exercise and inactivity-induced atrophy[J]. Int J Sports Med, 2020, 41 (14): 994-1008.
|
| 29 |
Du J, Wang X, Miereles C, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions[J]. J Clin Invest, 2004, 113 (1): 115-123.
|
| 30 |
Plant PJ, Bain JR, Correa JE, et al. Absence of caspase-3 protects against denervation-induced skeletal muscle atrophy[J]. J Appl Physiol (1985), 2009, 107 (1): 224-234.
|
| 31 |
Lanone S, Taillé C, Boczkowski J, et al. Diaphragmatic fatigue during sepsis and septic shock[J]. Intensive Care Med, 2005, 31 (12): 1611-1617.
|
| 32 |
Ochala J, Ahlbeck K, Radell PJ, et al. Factors underlying the early limb muscle weakness in acute quadriplegic myopathy using an experimental ICU porcine model[J]. PLoS One, 2011, 6 (6): e20876.
|
| 33 |
Lafon T, Cazalis MA, Vallejo C, et al. Prognostic performance of endothelial biomarkers to early predict clinical deterioration of patients with suspected bacterial infection and sepsis admitted to the emergency department[J]. Ann Intensive Care, 2020, 10 (1): 113.
|
| 34 |
Poole DC, Musch TI, Colburn TD. Oxygen flux from capillary to mitochondria: integration of contemporary discoveries[J]. Eur J Appl Physiol, 2022, 122 (1): 7-28.
|
| 35 |
Becker BF, Jacob M, Leipert S, et al. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases[J]. Br J Clin Pharmacol, 2015, 80 (3): 389-402.
|
| 36 |
Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis[J]. Am J Respir Crit Care Med, 2020, 202 (3): 361-370.
|
| 37 |
Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease[J]. Thromb J, 2019, 17: 10.
|
| 38 |
Yoo JI, Kim MJ, Na JB, et al. Relationship between endothelial function and skeletal muscle strength in community dwelling elderly women[J]. J Cachexia Sarcopenia Muscle, 2018, 9 (6): 1034-1041.
|
| 39 |
Kowalewska PM, Kowalewski JE, Milkovich SL, et al. Spectroscopy detects skeletal muscle microvascular dysfunction during onset of sepsis in a rat fecal peritonitis model[J]. Sci Rep, 2022, 12 (1): 6339.
|
| 40 |
Mendelson AA, Erickson D, Villar R. The role of the microcirculation and integrative cardiovascular physiology in the pathogenesis of ICU-acquired weakness[J]. Front Physiol, 2023, 14: 1170429.
|
| 41 |
Witteveen E, Wieske L, van der Poll T, et al. Molecular diagnosis and risk stratification of sepsis (MARS) consortium. Increased early systemic inflammation in ICU-acquired weakness; a prospective observational cohort study[J]. Crit Care Med, 2017, 45 (6): 972-979.
|
| 42 |
Supinski GS, Schroder EA, Callahan LA. Mitochondria and critical illness[J]. Chest, 2020, 157 (2): 310-322.
|
| 43 |
Jiroutková K, Krajcová A, Ziak J, et al. Mitochondrial function in skeletal muscle of patients with protracted critical illness and ICU-acquired weakness[J]. Crit Care, 2015, 19: 448.
|
| 44 |
Oliveira TS, Santos AT, Andrade CBV, et al. Sepsis disrupts mitochondrial function and diaphragm morphology[J]. Front Physiol, 2021, 12: 704044.
|
| 45 |
James JH, Luchette FA, McCarter FD, et al. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis[J]. Lancet, 1999, 354 (9177): 505-508.
|
| 46 |
von Seth M, Hillered L, Otterbeck A, et al. Early decreased respiratory chain capacity in resuscitated experimental sepsis is a major contributor to lactate production[J]. Shock, 2023, 60 (3): 461-468.
|
| 47 |
Owen AM, Patel SP, Smith JD, et al. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model[J]. Elife, 2019, 8: e49920.
|
| 48 |
Cantó-Santos J, Grau-Junyent JM, Garrabou G. The impact of mitochondrial deficiencies in neuromuscular diseases[J]. Antioxidants (Basel), 2020, 9 (10): 964.
|
| 49 |
Duan H, Bai H. Is mitochondrial oxidative stress the key contributor to diaphragm atrophy and dysfunction in critically ill patients?[J]. Crit Care Res Pract, 2020, 2020: 8672939.
|
| 50 |
Zhang Z, Yan C, Miao J, et al. Muscle-derived mitochondrial transplantation reduces inflammation, enhances bacterial clearance, and improves survival in sepsis[J]. Shock, 2021, 56 (1): 108-118.
|
| 51 |
Terrell K, Choi S, Choi S. Calcium's role and signaling in aging muscle, cellular senescence, and mineral interactions[J]. Int J Mol Sci, 2023, 24 (23): 17034.
|
| 52 |
Llano-Diez M, Cheng AJ, Jonsson W, et al. Impaired Ca2+ release contributes to muscle weakness in a rat model of critical illness myopathy[J]. Crit Care, 2016, 20 (1): 254.
|
| 53 |
Rossi D, Pierantozzi E, Amadsun DO, et al. The sarcoplasmic reticulum of skeletal muscle cells: a labyrinth of membrane contact sites[J]. Biomolecules, 2022, 12 (4): 488.
|
| 54 |
Andersson DC, Betzenhauser MJ, Reiken S, et al. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging[J]. Cell Metab, 2011, 14 (2): 196-207.
|
| 55 |
Dowling P, Gargan S, Swandulla D, et al. Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy[J]. Proteomics, 2022, 22 (23-24): e2200003.
|
| 56 |
Renaud JM, Ortenblad N, McKenna MJ, et al. Exercise and fatigue: integrating the role of K+, Na+ and Cl- in the regulation of sarcolemmal excitability of skeletal muscle[J]. Eur J Appl Physiol, 2023, 123 (11): 2345-2378.
|
| 57 |
Rich MM, Housley SN, Nardelli P, et al. Imbalanced subthreshold currents following sepsis and chemotherapy: a shared mechanism offering a new therapeutic target?[J]. Neuroscientist, 2022, 28 (2): 103-120.
|
| 58 |
Friedrich O, Reid MB, Van den Berghe G, et al. The sick and the weak: neuropathies/myopathies in the critically ill[J]. Physiol Rev, 2015, 95 (3): 1025-1109.
|
| 59 |
Rossignol B, Gueret G, Pennec JP, et al. Effects of chronic sepsis on the voltage-gated sodium channel in isolated rat muscle fibers[J]. Crit Care Med, 2007, 35 (2): 351-357.
|
| 60 |
Wang DW, George AL Jr, Bennett PB. Comparison of heterologously expressed human cardiac and skeletal muscle sodium channels[J]. Biophys J, 1996, 70 (1): 238-245.
|
| 61 |
Canfora I, Tarantino N, Pierno S. Metabolic pathways and ion channels involved in skeletal muscle atrophy: a starting point for potential therapeutic strategies[J]. Cells, 2022, 11 (16): 2566.
|
| 62 |
Pierno S, Desaphy JF, Liantonio A, et al. Disuse of rat muscle in vivo reduces protein kinase C activity controlling the sarcolemma chloride conductance[J]. J Physiol, 2007, 584 (Pt 3): 983-995.
|
| 63 |
Nishitani A, Yoshihara T, Tanaka M, et al. Muscle weakness and impaired motor coordination in hyperpolarization-activated cyclic nucleotide-gated potassium channel 1-deficient rats[J]. Exp Anim, 2020, 69 (1): 11-17.
|
| 64 |
Schmidt D, Margarites AG, Alvarenga LPKB, et al. Post-COVID-19 intensive care unit-acquired weakness compromises long-term functional status[J]. Phys Ther, 2023, 103 (12): pzad117.
|
| 65 |
Hermans G, Van Aerde N, Meersseman P, et al. Five-year mortality and morbidity impact of prolonged versus brief ICU stay: a propensity score matched cohort study[J]. Thorax, 2019, 74 (11): 1037-1045.
|
| 66 |
Dos Santos C, Hussain SN, Mathur S, et al. Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay. A pilot study[J]. Am J Respir Crit Care Med, 2016, 194 (7): 821-830.
|
| 67 |
Schmitt RE, Dasgupta A, Arneson-Wissink PC, et al. Muscle stem cells contribute to long-term tissue repletion following surgical sepsis[J]. J Cachexia Sarcopenia Muscle, 2023, 14 (3): 1424-1440.
|
| 68 |
Johnson AL, Kamal M, Parise G. The role of supporting cell populations in satellite cell mediated muscle repair[J]. Cells, 2023, 12 (15): 1968.
|
| 69 |
Li F, Sheng Z, Lan H, et al. Downregulated CHI3L1 alleviates skeletal muscle stem cell injury in a mouse model of sepsis[J]. IUBMB Life, 2020, 72 (2): 214-225.
|
| 70 |
Genserová L, Duska F, Krajcová A. β-hydroxybutyrate exposure restores mitochondrial function in skeletal muscle satellite cells of critically ill patients[J]. Clin Nutr, 2024, 43 (6): 1250-1260.
|