| 1 |
Guérout N. Plasticity of the injured spinal cord[J]. Cells, 2021, 10 (8): 1886.
|
| 2 |
Devivo MJ. Epidemiology of traumatic spinal cord injury: trends and future implications[J]. Spinal Cord, 2012, 50 (5): 365-372.
|
| 3 |
GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18 (1): 56-87.
|
| 4 |
Zhai X, Chen K, Wei X, et al. Microneedle/CD-MOF-mediated transdural controlled release of methylprednisolone sodium succinate after spinal cord injury[J]. J Control Release, 2023, 360: 236-248.
|
| 5 |
Adegeest CY, Ter Wengel PV, Peul WC. Traumatic spinal cord injury: acute phase treatment in critical care[J]. Curr Opin Crit Care, 2023, 29 (6): 659-665.
|
| 6 |
吴鑫杰,谭明生,移平. NOD样受体蛋白3炎性小体在创伤性脊髓损伤中的作用[J].中医正骨,2019,31(2):31-35.
|
| 7 |
Hu X, Xu W, Ren Y, et al. Spinal cord injury: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2023, 8 (1): 245.
|
| 8 |
Wu J, Lipinski MM. Autophagy in neurotrauma: good, bad, or dysregulated[J]. Cells, 2019, 8 (7): 693.
|
| 9 |
Pukos N, Marion CM, Arnold WD, et al. Chronic demyelination and myelin repair after spinal cord injury in mice: a potential link for glutamatergic axon activity[J]. Glia, 2023, 71 (9): 2096-2116.
|
| 10 |
Hu X, Xu W, Ren Y, et al. Spinal cord injury: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2023, 8 (1): 245.
|
| 11 |
Buzoianu-Anguiano V, Torres-Llacsa M, Doncel-Pérez E. Role of aldynoglia cells in neuroinflammatory and neuroimmune responses after spinal cord injury[J]. Cells, 2021, 10 (10): 2783.
|
| 12 |
An N, Yang J, Wang H, et al. Mechanism of mesenchymal stem cells in spinal cord injury repair through macrophage polarization[J]. Cell Biosci, 2021, 11 (1): 41.
|
| 13 |
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med, 2007, 13 (6): 688-694.
|
| 14 |
尚云,王倩楠,申英俊,等.氢气对大鼠缺氧缺血性脑病的抗炎和神经保护作用[J].医学研究志,2025,54(3):80-84.
|
| 15 |
Chu X, Cao L, Yu Z, et al. Hydrogen-rich saline promotes microglia M2 polarization and complement-mediated synapse loss to restore behavioral deficits following hypoxia-ischemic in neonatal mice via AMPK activation[J]. J Neuroinflammation, 2019, 16 (1): 104.
|
| 16 |
肖琦凡,康曼德,唐彬,等.氢气对神经系统疾病治疗作用的研究进展[J].重庆医学,2022,51(18):3217-3220.
|
| 17 |
Wang F, Zhang G, Zhai Q. Role and mechanism of molecular hydrogen in the treatment of Parkinson's diseases[J]. Front Neurosci, 2025, 19: 1576773.
|
| 18 |
Zhang YG, Sheng QS, Wang ZJ, et al. Hydrogen-rich saline promotes motor functional recovery following peripheral nerve autografting in rats[J]. Exp Ther Med, 2015, 10 (2): 727-732.
|
| 19 |
Li H, Chen O, Ye Z, et al. Inhalation of high concentrations of hydrogen ameliorates liver ischemia/reperfusion injury through A2A receptor mediated PI3K-Akt pathway[J]. Biochem Pharmacol, 2017, 130: 83-92.
|
| 20 |
Chen L, Chao Y, Cheng P, et al. UPLC-QTOF/MS-based metabolomics reveals the protective mechanism of hydrogen on mice with ischemic stroke[J]. Neurochem Res, 2019, 44 (8): 1950-1963.
|
| 21 |
吴杰,周志强,符菁,等.吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL].中华危重症医学杂志(电子版),2024,17(5):363-371.
|
| 22 |
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms[J]. Front Neurol, 2019, 10: 282.
|
| 23 |
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury[J]. Nat Rev Dis Primers, 2017, 3: 17018.
|
| 24 |
Li H, Sun H, Li S, et al. Hydrogen alleviates hypoxic-ischaemic brain damage in neonatal rats by inhibiting injury of brain pericytes[J]. J Cell Mol Med, 2024, 28 (13): e18505.
|
| 25 |
Yuan J, Wang D, Liu Y, et al. Hydrogen-rich water attenuates oxidative stress in rats with traumatic brain injury via Nrf2 pathway[J]. J Surg Res, 2018, 228: 238-246.
|
| 26 |
陈含冰,储翠林,邱海波.急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J/OL].中华重症医学电子杂志,2024,10(1):79-84.
|
| 27 |
田昊哲,郑娟,王晓璇,等.自噬在脊髓损伤中的生物学功能和治疗潜力[J].中国现代医生,2025,63(6):110-114.
|
| 28 |
Liu Y, Leng B, Xia M, et al. Regulatory role of the mTOR signaling pathway in autophagy and mesangial proliferation in IgA nephropathy[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2024, 49 (8): 1220-1231.
|
| 29 |
Deleyto-Seldas N, Efeyan A. The mTOR-autophagy axis and the control of metabolism[J]. Front Cell Dev Biol, 2021, 9: 655731.
|
| 30 |
Zhang Q, Wang X, Cao S, et al. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways[J]. Biomed Pharmacother, 2020, 128: 110245.
|
| 31 |
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases[J]. Nat Rev Drug Discov, 2012, 11 (9): 709-730.
|
| 32 |
Xiao P, Gu J, Xu W, et al. RTN4/Nogo-A-S1PR2 negatively regulates angiogenesis and secondary neural repair through enhancing vascular autophagy in the thalamus after cerebral cortical infarction[J]. Autophagy, 2022, 18 (11): 2711-2730.
|
| 33 |
Peng W, Wan L, Luo Z, et al. Microglia-derived exosomes improve spinal cord functional recovery after injury via inhibiting oxidative stress and promoting the survival and function of endothelia cells[J]. Oxid Med Cell Longev, 2021: 1695087.
|
| 34 |
Clifford T, Finkel Z, Rodriguez B, et al. Current advancements in spinal cord injury research—glial scar formation and neural regeneration[J]. Cells, 2023, 12 (6): 853.
|
| 35 |
Yang RY, Chai R, Pan JY, et al. Knockdown of polypyrimidine tract binding protein facilitates motor function recovery after spinal cord injury[J]. Neural Regen Res, 2023, 18 (2): 396-403.
|
| 36 |
Stern S, Hilton BJ, Burnside ER, et al. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury[J]. Neuron, 2021, 109 (21): 3436-3455.e9.
|
| 37 |
Zheng B, Tuszynski MH. Regulation of axonal regeneration after mammalian spinal cord injury[J]. Nat Rev Mol Cell Biol, 2023, 24 (6): 396-413.
|
| 38 |
Bai X, Liu S, Yuan L, et al. Hydrogen-rich saline mediates neuroprotection through the regulation of endoplasmic reticulum stress and autophagy under hypoxia-ischemia neonatal brain injury in mice[J]. Brain Res, 2016, 1646: 410-417.
|
| 39 |
Cheng M, Gao Y, Wu Y, et al. Plasmalogens activate AKT/mTOR signaling to attenuate reactive oxygen species production in spinal cord injury[J]. Curr Gene Ther, 2025. Online ahead of print.
|
| 40 |
Li GL, Farooque M, Holtz A, et al. Microtubule-associated protein 2 as a sensitive marker for dendrite lesions after spinal cord trauma: an immunohistochemical study in the rat[J]. Restor Neurol Neurosci, 1995, 8 (4): 189-197.
|
| 41 |
Weng J, Wang L, Wang K, et al. Correction: tauroursodeoxycholic acid inhibited apoptosis and oxidative stress in H2O2-induced bmsc death via modulating the Nrf-2 signaling pathway: the therapeutic implications in a rat model of spinal cord injury[J]. Mol Neurobiol, 2024, 61 (7): 3769-3770.
|
| 42 |
杨永祥.外泌体源性miR-124对创伤性脑损伤后海马区神经炎症和神经再生的作用和机制研究[D].西安:中国人民解放军空军军医大学,2019.
|
| 43 |
Deryugina AV, Danilova DA, Pichugin VV, et al. The effect of molecular hydrogen on functional states of erythrocytes in rats with simulated chronic heart failure[J]. Life (Basel), 2023, 13 (2): 418.
|