切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2025, Vol. 18 ›› Issue (04) : 265 -273. doi: 10.3877/cma.j.issn.1674-6880.2025.04.001

论著

山蜡梅挥发油通过调控线粒体相关内质网膜减轻脂多糖诱导的小肠隐窝上皮细胞炎症损伤
罗凯航1, 卿城1, 张世超1, 周嘉1, 李文娟2, 胡志国1, 李丹1, 王城1, 周超琪1, 杨钰婷1, 黄舒颖3, 曾振国1,()   
  1. 1330200 南昌,南昌大学第一附属医院重症医学科
    2330031 南昌,南昌大学食品科学与资源挖掘全国重点实验室
    3330200 南昌,南昌大学第一附属医院生殖医学科
  • 收稿日期:2025-01-13 出版日期:2025-08-31
  • 通信作者: 曾振国
  • 基金资助:
    国家自然科学基金项目(82060360)

Chimonanthus nitens Oliv. essential oil mitigates lipopolysaccharide-induced inflammatory injury in intestinal epithelioid cell line No.6 cells by modulating mitochondria-associated endoplasmic reticulum membranes

Kaihang Luo1, Cheng Qing1, Shichao Zhang1, Jia Zhou1, Wenjuan Li2, Zhiguo Hu1, Dan Li1, Cheng Wang1, Chaoqi Zhou1, Yuting Yang1, Shuying Huang3, Zhenguo Zeng1,()   

  1. 1Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang 330200, China
    2State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, China
    3Department of Reproductive Medicine, the First Affiliated Hospital of Nanchang University, Nanchang 330200, China
  • Received:2025-01-13 Published:2025-08-31
  • Corresponding author: Zhenguo Zeng
引用本文:

罗凯航, 卿城, 张世超, 周嘉, 李文娟, 胡志国, 李丹, 王城, 周超琪, 杨钰婷, 黄舒颖, 曾振国. 山蜡梅挥发油通过调控线粒体相关内质网膜减轻脂多糖诱导的小肠隐窝上皮细胞炎症损伤[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(04): 265-273.

Kaihang Luo, Cheng Qing, Shichao Zhang, Jia Zhou, Wenjuan Li, Zhiguo Hu, Dan Li, Cheng Wang, Chaoqi Zhou, Yuting Yang, Shuying Huang, Zhenguo Zeng. Chimonanthus nitens Oliv. essential oil mitigates lipopolysaccharide-induced inflammatory injury in intestinal epithelioid cell line No.6 cells by modulating mitochondria-associated endoplasmic reticulum membranes[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2025, 18(04): 265-273.

目的

探讨山蜡梅挥发油(CEO)对脂多糖(LPS)所致小肠隐窝上皮细胞(IEC-6)炎症损伤的保护作用及机制。

方法

使用LPS刺激IEC-6细胞构建炎症损伤模型,并采用CEO进行干预,通过细胞计数试剂盒8(CCK-8)法测定各组细胞活力,明确建立模型的最佳药物浓度。随后将IEC-6细胞将分为对照组、CEO组、LPS组和CEO + LPS组。CEO组和CEO + LPS组采用20 mg / L CEO预孵育24 h,LPS组和CEO + LPS组使用10 mg / L LPS构建炎症损伤模型。酶联免疫吸附法(ELISA)检测各组IEC-6细胞上清白细胞介素1β(IL-1β)分泌水平,流式细胞仪检测细胞内活性氧(ROS)生成情况。蛋白印记法检测IEC-6细胞内P65、磷酸化P65、Cleaved caspase-1、囊泡相关膜蛋白相关蛋白B(VAPB)蛋白表达水平。共聚焦显微镜检测细胞内线粒体膜电位、线粒体钙离子水平、线粒体相关内质网膜(MAMs)形成情况及核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)蛋白与MAMs的共定位关系。

结果

4组细胞IL-1β、P65蛋白磷酸化、Cleaved caspase-1蛋白、ROS含量、线粒体膜电位、线粒体钙离子水平及VAPB蛋白表达水平比较,差异均有统计学意义(F = 15.860、22.260、11.340、65.220、32.210、15.800、7.210,P均< 0.05)。与对照组比较,LPS组IL-1β分泌增加,ROS生成增加,线粒体膜电位下降,P65蛋白磷酸化水平和Cleaved caspase-1蛋白表达上升,线粒体钙离子蓄积,VAPB蛋白表达量上升(P均< 0.05);与LPS组比较,CEO + LPS组细胞IL-1β分泌减少,ROS生成减少,线粒体膜电位上升,P65蛋白磷酸化水平和Cleaved caspase-1蛋白表达下降,线粒体内钙离子蓄积减少,VAPB蛋白表达量下降(P均< 0.05)。共聚焦显微镜显示对照组和CEO组MAMs形成较少,且NLRP3与MAMs共定位较少;LPS组MAMs形成增多,且与NLRP3蛋白共定位增加;CEO + LPS组MAMs形成及与NLRP3共定位情况则有所改善。

结论

CEO对LPS所致IEC-6细胞炎症损伤具有保护作用,其机制可能是通过抑制核因子κB通路激活和调节VAPB蛋白表达,影响MAMs的形成和功能,从而减轻线粒体损伤。

Objective

To investigate the protective effect and mechanism of Chimonanthus nitens Oliv. essential oil (CEO) on lipopolysaccharide (LPS)-induced inflammatory injury in intestinal epithelioid cell line No.6 (IEC-6) cells.

Methods

IEC-6 cells were stimulated with LPS to establish an inflammatory injury model, and CEO treatment was applied as an intervention. The cell counting kit-8 (CCK-8) assay was used to evaluate cell viability and determine the appropriate concentration for model induction. IEC-6 cells were divided into four groups: the control, CEO, LPS, and CEO + LPS groups. The CEO group and CEO + LPS group were pre-incubated with 20 mg / L CEO for 24 h, while the LPS group and CEO + LPS group were treated with 10 mg / L LPS to induce inflammatory injury. Interleukin-1 beta (IL-1β) secretion levels in the IEC-6 cell supernatants were measured using enzyme linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) generation was assessed using flow cytometry. The expression levels of P65, phosphorylated P65, Cleaved caspase-1, and vesicle-associated membrane protein-associated protein B (VAPB) in IEC-6 cells were determined by western-blotting. Mitochondrial membrane potential changes, mitochondrial calcium levels, mitochondria-associated endoplasmic reticulum membranes (MAMs) formation, and co-localization of NOD-like receptor protein 3 (NLRP3) with MAMs were examined using confocal microscopy.

Results

Significant differences were observed among the four groups in IL-1β secretion, P65 phosphorylation, Cleaved caspase-1 expression, ROS levels, mitochondrial membrane potential, mitochondrial calcium levels, and VAPB protein expression (F = 15.860, 22.260, 11.340, 65.220, 32.210, 15.800, 7.210; all P < 0.05). Compared with the control group, the IL-1β secretion, ROS production, P65 phosphorylation, Cleaved caspase-1 expression, mitochondrial calcium accumulation, and VAPB protein expression were significantly increased, while the mitochondrial membrane potential was decreased in the LPS group (all P < 0.05). Compared with the LPS group, the CEO + LPS group exhibited a significant increase in mitochondrial membrane potential, along with a reduction in IL-1β secretion, ROS production, P65 phosphorylation, Cleaved caspase-1 expression, mitochondrial calcium accumulation, and VAPB protein expression (all P < 0.05). Confocal microscopy showed that the formation of MAMs was less in the control group and CEO group, and the co-localization of NLRP3 with MAMs was also less. In the LPS group, the formation of MAMs increased, and the co-localization of NLRP3 with MAMs also increased. However, in the CEO + LPS group, the formation of MAMs and their co-localization with NLRP3 were improved.

Conclusions

CEO exerts a protective effect against LPS-induced inflammatory injury in IEC-6 cells. The underlying mechanism may involve the inhibition of nuclear factor kappa-B pathway activation and the regulation of VAPB protein expression, thereby influencing MAMs formation and function to mitigate mitochondrial damage.

图1 CCK-8检测不同浓度LPS和CEO对IEC-6细胞活力的影响(每组n = 3)注:CCK-8.细胞计数试剂盒8;LPS.脂多糖;CEO.山蜡梅挥发油;IEC-6.小肠隐窝上皮细胞;a图为不同浓度的LPS刺激下IEC-6细胞活力比较,与0 mg / L的LPS比较,aP < 0.05;b图为使用10 mg / L的LPS下不同浓度CEO干预后IEC-6细胞活力比较,与空白对照组比较,aP < 0.05;与0 mg / L CEO组比较,bP < 0.05
图2 各组IEC-6细胞IL-1β分泌水平的比较(每组n = 3)注:IEC-6.小肠隐窝上皮细胞;IL-1β.白细胞介素1β;LPS.脂多糖;CEO.山蜡梅挥发油;与对照组比较,aP < 0.05;与LPS组比较,bP < 0.05
图3 各组IEC-6细胞P-P65、Cleaved caspase-1蛋白表达水平的比较(每组n = 3)注:IEC-6.小肠隐窝上皮细胞;P-P65.磷酸化P65;LPS.脂多糖;CEO.山蜡梅挥发油;与对照组比较,aP < 0.05;与LPS组比较,bP < 0.05
图4 各组IEC-6细胞ROS含量(2',7'-二氯荧光素的相对荧光强度)的比较(每组n = 3)注:IEC-6.小肠隐窝上皮细胞;ROS.活性氧;LPS.脂多糖;CEO.山蜡梅挥发油;与对照组比较,aP < 0.05;与LPS组比较,bP < 0.05
图5 各组IEC-6细胞线粒体膜电位水平比较(每组n = 3)注:IEC-6.小肠隐窝上皮细胞;LPS.脂多糖;CEO.山蜡梅挥发油;在线粒体膜电位较低时,JC-1不能进入线粒体基质中,单体JC-1发出绿色荧光,在线粒体膜电位较高时,JC-1聚集在线粒体的基质中,形成聚合物发出红色荧光,两色荧光强度之比反映线粒体膜电位水平;对照组和CEO组红色/绿色相对荧光强度高,显示线粒体膜电位较高;LPS组红色/绿色相对荧光强度较低,显示线粒体膜电位降低;LPS + CEO组显示线粒体膜电位较LPS组有改善;与对照组比较,aP < 0.05;与LPS组比较,bP < 0.05
图6 各组IEC-6细胞MAMs形成与NLRP3共定位注:IEC-6.小肠隐窝上皮细胞;MAMs.线粒体相关内质网膜;NLRP3.核苷酸结合寡聚化结构域样受体蛋白3;LPS.脂多糖;CEO.山蜡梅挥发油;Mito tracker为线粒体标记物,发出绿色荧光;ER tracker为内质网标记物,发出红色荧光;Mito tracker与ER tracker共定位产生黄色荧光,表明MAMs形成;NLRP3发出紫色荧光,与MAMs共定位产生白色荧光,表明NLRP3向MAMs聚集;对照组和CEO组MAMs形成较少,且NLRP3与MAMs共定位较少;LPS组MAMs形成增多并与NLRP3发生共定位;LPS + CEO组MAMs形成情况和NLRP3共定位情况较LPS组有所改善
图7 各组IEC-6细胞线粒体钙离子水平的比较(每组n = 3)注:IEC-6.小肠隐窝上皮细胞;LPS.脂多糖;CEO.山蜡梅挥发油;Rhod-2定位线粒体中钙离子,为红色荧光,荧光强度反映钙离子水平;Hoechst定位细胞核,为蓝色荧光;对照组和CEO组Rhod-2荧光强度较低,表明线粒体钙离子含量较低;LPS组Rhod-2荧光强度较高,表明线粒体钙离子含量较高;LPS + CEO组显示线粒体钙离子含量较LPS组有所改善;与对照组比较,aP < 0.05;与LPS组比较,bP < 0.05
图8 各组IEC-6细胞VAPB蛋白表达比较(每组n = 3)注:IEC-6.小肠隐窝上皮细胞;VAPB.囊泡相关膜蛋白相关蛋白B;LPS.脂多糖;CEO.山蜡梅挥发油;与对照组比较,aP < 0.05;与LPS组比较,bP < 0.05
1
Reintam Blaser A, Malbrain ML, Starkopf J, et al. G-astrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems[J]. Intensive Care Med, 2012, 38 (3): 384-394.
2
杜同跃,郑以山. 肠道菌群在危重症患者肠内营养代谢中作用的研究进展[J/OL]. 中华危重症医学杂志(电子版)2023,16(2):142-148.
3
Assimakopoulos SF, Triantos C, Thomopoulos K, et al. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment[J]. Infection, 2018, 46 (6): 751-760.
4
彭适,李欢,陈娟娟,等. 铁死亡的发生机制及其在脓毒症中的研究进展[J/OL]. 中华危重症医学杂志(电子版)2022,15(6):500-504.
5
Marchi S, Guilbaud E, Tait SWG, et al. Mitochondrial control of inflammation[J]. Nat Rev Immunol, 2023, 23 (3): 159-173.
6
Xu K, Saaoud F, Shao Y, et al. A new paradigm in intracellular immunology: mitochondria emerging as leading immune organelles[J]. Redox Biol, 2024, 76: 103331.
7
Garbincius JF, Elrod JW. Mitochondrial calcium exch-ange in physiology and disease[J]. Physiol Rev, 2022, 102 (2): 893-992.
8
Jiang T, Ruan N, Luo P, et al. Modulation of ER-mitochondria tethering complex VAPB-PTPIP51: novel therapeutic targets for aging-associated diseases[J]. Ageing Res Rev, 2024, 98: 102320.
9
Blair K, Martinez-Serra R, Gosset P, et al. Structural and functional studies of the VAPB-PTPIP51 ER-mitochondria tethering proteins in neurodegenerative diseases[J]. Acta Neuropathol Commun, 2025, 13 (1): 49.
10
黄文平,温芝琪,王萌萌,等. 不同产地山腊梅叶HPLC指纹图谱[J]. 中成药2018,40(8):1795-1798.
11
梁炳辉,李家春,陈伟云,等. 山蜡梅叶健脾汤治疗慢性阻塞性肺疾病急性加重期对肺功能、血清氧化应激指标的影响[J]. 中华中医药学刊2019,37(4):1002-1005.
12
Zhang Y, Han Y, He J, et al. Digestive properties and effects of Chimonanthus nitens Oliv polysaccharides on antioxidant effects in vitro and in immunocompromised mice[J]. Int J Biol Macromol, 2021, 185: 306-316.
13
Huang JQ, Wei SY, Cheng N, et al. Chimonanthus nitens Oliv. leaf granule ameliorates DSS-induced acute colitis through treg cell improvement, oxidative stress reduction, and gut microflora modulation[J]. Front Cell Infect Microbiol, 2022, 12: 907813.
14
Huang W, Wen Z, Wang M, et al. Anticomplement and antitussive activities of major compound extracted from Chimonanthus nitens Oliv. leaf[J]. Biomed Chromatogr, 2020, 34 (2): e4736.
15
Li T, Wan M, Qing C, et al. Lung protection of Chimonanthus nitens Oliv. essential oil driven by the control of intestinal disorders and dysbiosis through gut-lung crosstalk [published correction appears in Life Sci. 2024, 339: 122444.][J]. Life Sci. 2023, 333: 122156.
16
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation [published correction appears in Nature. 2011, 475 (7354): 122][J]. Nature, 2011, 469 (7329): 221-225.
17
Willems PH, Rossignol R, Dieteren CE, et al. Redox homeostasis and mitochondrial dynamics[J]. Cell Metab, 2015, 22 (2): 207-218.
18
Baik SH, Ramanujan VK, Becker C, et al. Hexokinase dissociation from mitochondria promotes oligomerization of VDAC that facilitates NLRP3 inflammasome assembly and activation[J]. Sci Immunol, 2023, 8 (84): eade7652.
19
Wu H, Chen W, Chen Z, et al. Novel tumor therapy strategies targeting endoplasmic reticulum-mitochondria signal pathways[J]. Ageing Res Rev, 2023, 88: 101951.
20
De Vos KJ, Mórotz GM, Stoica R, et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis[J]. Hum Mol Genet, 2012, 21 (6): 1299-1311.
21
Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness[J]. Crit Care Clin, 2016, 32 (2): 203-212.
22
Seemann S, Zohles F, Lupp A. Comprehensive comparison of three different animal models for systemic inflammation[J]. J Biomed Sci, 2017, 24 (1): 60.
23
Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41: 301-316.
24
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases[J]. Clin Interv Aging, 2018, 13: 757-772.
25
Wang Y, Zhang X, Wen Y, et al. Endoplasmic reticulum-mitochondria contacts: a potential therapy target for cardiovascular remodeling-associated diseases[J]. Front Cell Dev Biol, 2021, 9: 774989.
26
Walkon LL, Strubbe-Rivera JO, Bazil JN. Calcium overload and mitochondrial metabolism[J]. Biomolecules, 2022, 12 (12): 1891.
27
Zhang JR, Shen SY, Zhai MY, et al. Augmented microglial endoplasmic reticulum-mitochondria contacts mediate depression-like behavior in mice induced by chronic social defeat stress[J]. Nat Commun, 2024, 15 (1): 5199.
28
Markovinovic A, Martín-Guerrero SM, Mórotz GM, et al. Stimulating VAPB-PTPIP51 ER-mitochondria tethering corrects FTD / ALS mutant TDP43 linked Ca2+ and synaptic defects[J]. Acta Neuropathol Commun, 2024, 12 (1): 32.
[1] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[2] 于露, 李永华. 线粒体相关内质网膜的生物学功能及其在相关疾病中作用的研究进展[J/OL]. 中华诊断学电子杂志, 2022, 10(04): 284-288.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?