切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2025, Vol. 18 ›› Issue (03) : 182 -188. doi: 10.3877/cma.j.issn.1674-6880.2025.03.002

论著

斑点型锌指结构蛋白介导Toll样受体/核因子κB信号通路调控肺炎大鼠肺组织损伤的机制研究
苏小燕, 阮仙利, 柯海艳, 沈炎梅, 张琼()   
  1. 310012 杭州,浙江省立同德医院儿科
  • 收稿日期:2024-11-04 出版日期:2025-06-30
  • 通信作者: 张琼
  • 基金资助:
    浙江省医药卫生科技计划项目(2021419541)

Mechanism of speckle-type POZ protein-mediated Toll-like receptors/nuclear factor-kappaB signaling pathway regulating lung tissue injury in rats with pneumonia

Xiaoyan Su, Xianli Ruan, Haiyan Ke, Yanmei Shen, Qiong Zhang()   

  1. Department of Pediatrics, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
  • Received:2024-11-04 Published:2025-06-30
  • Corresponding author: Qiong Zhang
引用本文:

苏小燕, 阮仙利, 柯海艳, 沈炎梅, 张琼. 斑点型锌指结构蛋白介导Toll样受体/核因子κB信号通路调控肺炎大鼠肺组织损伤的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(03): 182-188.

Xiaoyan Su, Xianli Ruan, Haiyan Ke, Yanmei Shen, Qiong Zhang. Mechanism of speckle-type POZ protein-mediated Toll-like receptors/nuclear factor-kappaB signaling pathway regulating lung tissue injury in rats with pneumonia[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2025, 18(03): 182-188.

目的

探究斑点型锌指结构蛋白(SPOP)介导Toll样受体(TLRs)/核因子κB(NF-κB)信号通路调控肺炎大鼠肺组织损伤的机制。

方法

将30只Sprague Dawley大鼠分为肺炎组、抑制剂组和对照组,每组各10只。构建肺炎大鼠模型,观察大鼠肺组织病理学变化,并计算肺组织损伤程度评分及肺湿/干比重。采用western-blotting法检测SPOP、TLR4、TLR9、NF-κB及髓样分化因子88(MyD88)的蛋白表达,酶联免疫吸附法检测血清白细胞介素1β(IL-1β)、IL-6、肿瘤坏死因子α(TNF-α)水平。

结果

对照组大鼠肺组织结构正常,无明显病变;肺炎组大鼠部分肺泡壁增厚,可观察到炎症细胞浸润;抑制剂组大鼠肺泡破坏程度更大,炎症细胞浸润范围和程度较肺炎组更重。3组大鼠肺组织损伤程度评分、湿/干比重,肺组织中SPOP、TLR4、TLR9、NF-κB、MyD88的蛋白表达水平以及血清IL-1β、IL-6、TNF-α水平比较,差异均有统计学意义(F = 178.049、8.557、15.489、36.935、37.490、35.152、91.250、89.687、361.539、16.319,P均< 0.001)。进一步两两比较发现,肺炎组及抑制剂组大鼠肺组织损伤程度评分、湿/干比重,肺组织中SPOP、TLR4、TLR9、NF-κB、MyD88的蛋白表达水平以及血清IL-1β、IL-6、TNF-α水平均高于对照组;且抑制剂组大鼠肺组织损伤程度评分、湿/干比重,肺组织中TLR4、TLR9、NF-κB、MyD88的蛋白表达水平以及血清IL-1β、IL-6、TNF-α水平均高于肺炎组,而SPOP的蛋白表达则低于肺炎组(P均< 0.05)。

结论

SPOP通过与MyD88之间的相互作用调控TLRs/NF-κB信号通路,进而对肺炎大鼠肺组织的炎症反应造成影响。

Objective

To explore the mechanism of Toll-like receptors (TLRs)/nuclear factor-kappaB (NF-κB) signaling pathway mediated by speckle-type POZ protein (SPOP) on lung tissue injury in rats with pneumonia.

Methods

Thirty Sprague Dawley rats were divided into a pneumonia group, an inhibitor group and a control group, with 10 rats in each group. A rat model of pneumonia was constructed, and the histopathological changes of lung tissue were observed. The lung tissue injury degree score and lung wet/dry specific gravity were calculated. The protein expression levels of SPOP, TLR4, TLR9, NF-κB and myeloid differentiation factor 88 (MyD88) were detected by western-blotting. The levels of serum interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-alpha (TNF-α) were detected by enzyme-linked immunosorbent assay.

Results

The lung tissue structure of the rats in the control group was normal, without obvious lesions. In the pneumonia group, some alveolar walls were thickened, and inflammatory cell infiltration could be observed. The degree of alveolar destruction was greater, and the range and degree of inflammatory cell infiltration were more severe in the inhibitor group than in the pneumonia group. There were statistically significant differences in the lung tissue injury degree score, wet/dry specific gravity, protein expression levels of SPOP, TLR4, TLR9, NF-κB and MyD88 in lung tissue, and levels of serum IL-1β, IL-6 and TNF-α among the three groups (F = 178.049, 8.557, 15.489, 36.935, 37.490, 35.152, 91.250, 89.687, 361.539, 16.319; all P < 0.001). Further pairwise comparisons revealed that the lung tissue injury degree score, wet/dry specific gravity, and protein expression levels of SPOP, TLR4, TLR9, NF-κB, and MyD88 in lung tissue, as well as serum levels of IL-1β, IL-6 and TNF-α, in the pneumonia group and inhibitor group were all higher than those in the control group (all P < 0.05). Moreover, the lung tissue injury degree score, wet/dry specific gravity, and protein expression levels of TLR4, TLR9, NF-κB and MyD88 in lung tissue, as well as the levels of serum IL-1β, IL-6 and TNF-α, in the inhibitor group were all higher than those in the pneumonia group, while the protein expression of SPOP was lower (all P < 0.05).

Conclusion

SPOP regulates the TLRs/NF-κB signaling pathway through the interaction with MyD88, which in turn affects the inflammatory response of lung tissue in rats with pneumonia.

图1 3组大鼠肺组织病理损伤情况(HE染色 × 200)注:HE.苏木素-伊红;a图为对照组,可见肺泡上皮细胞排列整齐,无坏死或脱落,未见炎症细胞浸润;b图为肺炎组,可见肺泡上皮细胞坏死、脱落,肺泡腔内可见渗出物,炎症细胞浸润;c图为抑制剂组,可见肺泡上皮细胞坏死、脱落,炎症细胞浸润情况较肺炎组更重
表1 各组大鼠肺组织损伤程度评分及湿/干比重比较( ± s
图2 各组大鼠肺组织SPOP及TLRs/NF-κB通路相关的蛋白表达情况注:SPOP.斑点型锌指结构蛋白;TLRs. Toll样受体;NF-κB.核因子κB;MyD88.髓样分化因子88;GAPDH.甘油醛-3-磷酸脱氢酶
表2 3组大鼠肺组织SPOP及TLRs/NF-κB通路相关的蛋白表达比较( ± s
表3 3组大鼠血清炎症因子的表达比较(ng/L, ± s
1
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-induced inflammation, resolution and cardiovascular disease: causes, consequences and clinical opportunities[J]. Circ Res, 2023, 132 (6): 751-774.
2
Savin IA, Zenkova MA, Sen'kova AV. Pulmonary fibrosis as a result of acute lung inflammation: molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches[J]. Int J Mol Sci, 2022, 23 (23): 14959.
3
Malainou C, Abdin SM, Lachmann N, et al. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting[J]. J Clin Invest, 2023, 133 (19): e170501.
4
Chen M, Deng H, Zhao Y, et al. Toll-like receptor 2 modulates pulmonary inflammation and TNF-α release mediated by mycoplasma pneumoniae[J]. Front Cell Infect Microbiol, 2022, 12: 824027.
5
Zhu Y, Han Q, Wang L, et al. Jinhua Qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway[J]. J Ethnopharmacol, 2023, 301: 115763.
6
Wang P, Yin B, Zhang Z, et al. Foamy macrophages potentially inhibit tuberculous wound healing by inhibiting the TLRs/NF-κB signalling pathway[J]. Wound Repair Regen, 2022, 30 (3): 376-396.
7
林婷,曹心怡,金晓锋. E3泛素连接酶接头蛋白SPOP介导的底物非降解型泛素化修饰[J]. 中国生物化学与分子生物学报202137(7):874-882.
8
Yang X, Zhu Q. SPOP in cancer: phenomena, mechanisms and its role in therapeutic implications[J]. Genes (Basel), 2022, 13 (11): 2051.
9
Hu YH, Wang Y, Wang F, et al. SPOP negatively regulates Toll-like receptor-induced inflammation by disrupting MyD88 self-association[J]. Cell Mol Immunol, 2021, 18 (7): 1708-1717.
10
杨茂宪,沈鹏,王倩倩,等. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J/OL]. 中华危重症医学杂志(电子版)202417(3):196-203.
11
李璐璐,马利红,金佳佳,等. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版)202417(2):97-103.
12
Hu J, Ye Y, Chen X, et al. Insight into the pathogenic mechanism of mycoplasma pneumoniae[J]. Curr Microbiol, 2022, 80 (1): 14.
13
Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol, 2022, 13: 812774.
14
张雅迪,杜方兵,唐思慧,等. TLRs/NF-κB信号通路及T淋巴细胞与重症肺炎患者预后的关系[J]. 国际呼吸杂志202343(1):75-80.
15
Lu J, Gu B, Han X, et al. Mammary epithelial cell-derived exosomal miR-155-inhibitor played a key role in the treatment of mastitis via down-regulation of TLRs/NF-κB signaling pathway to inhibit inflammatory response[J]. Cell Mol Biol (Noisy-le-grand), 2023, 69 (15): 160-166.
16
Lian J, Zhu X, Du J, et al. Extracellular vesicle-transmitted miR-671-5p alleviates lung inflammation and injury by regulating the AAK1/NF-κB axis[J]. Mol Ther, 2023, 31 (5): 1365-1382.
17
Tao W, Su K, Huang Y, et al. Zuojinwan ameliorates CUMS-induced depressive-like behavior through inducing ubiquitination of MyD88 via SPOP/MyD88/ NF-κB pathway[J]. J Ethnopharmacol, 2023, 312: 116487.
18
Chen Y, Sun B. PTPRO activates TLR4/NF-κB signaling to intensify lipopolysaccharide-induced pneumonia cell injury[J]. Allergol Immunopathol (Madr), 2022, 50 (3): 119-124.
19
Zhang J, Yang X, Yang Y, et al. NF-κB mediates silica-induced pulmonary inflammation by promoting the release of IL-1β in macrophages[J]. Environ Toxicol, 2022, 37 (9): 2235-2243.
20
Gou X, Xu W, Liu Y, et al. IL-6 prevents lung macrophage death and lung inflammation injury by inhibiting GSDME- and GSDMD-mediated pyroptosis during pneumococcal pneumosepsis[J]. Microbiol Spectr, 2022, 10 (2): e0204921.
21
Chen D, Kang H, Tuo T, et al. Astragalus polysaccharide alleviated the inhibition of CSFV C-strain replication caused by PRRSV via the TLRs/NF-κB/TNF-α pathways[J]. Virus Res, 2022, 319: 198854.
[1] 谭品, 谢娟娟, 龙湘党, 敖琨, 张萍, 袁勇华. 自动心肌运动定量技术对支原体肺炎患儿左心室收缩功能的评估及与肺炎支原体DNA载量的关系[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 360-367.
[2] 张永威, 刘玉华. 利用列线图区分0~12岁社区获得性肺炎患儿肺炎支原体和病毒感染的探索性研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(02): 180-188.
[3] 石宛鑫, 商子梦, 吴桐, 卢帅, 邱倩, 徐艳利, 张强, 江宇泳, 刘秀颖, 蒋协远, 杨志云. 新型冠状病毒感染后中老年人维生素D缺乏对骨质疏松患病风险的影响[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(03): 136-145.
[4] 曹亚玲, 房忠军, 徐玲, 姜彬彬, 张向颖, 黄晶, 任锋. 基于重组酶介导等温扩增技术-规律间隔成簇短回文重复序列/相关蛋白系统检测肺炎克雷伯菌方法的建立及评价[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(02): 70-76.
[5] 赵艾红, 唐为娟, 傅俊建, 徐湘. 重度肺炎患儿感染后闭塞性细支气管炎列线图预测模型的构建及验证[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(02): 77-83.
[6] 李沛, 张海龙, 茅佳洋, 徐大荣, 赵菁. 肝素结合蛋白与白细胞介素-6水平在儿童大叶性肺炎中的动态变化及其与病情的相关性[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(02): 84-95.
[7] 管豪, 李小容, 张瑶, 任明针. 不同年龄难治性肺炎支原体肺炎患儿高迁移率族蛋白B1水平差异及对转归的预测价值[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(02): 104-115.
[8] 薛国强, 赵立明, 刘学军, 任玉林, 晏发隆, 杨晨, 杨嘉祺, 王永翔, 康印东. 甘草酸对尿源性脓毒症相关急性肾损伤的作用机制研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 498-507.
[9] 曹颖仪, 戴立廷, 赖艳榕, 冯文强, 袁培博, 陈定强. 耐碳青霉烯类肺炎克雷伯菌特征及致病机制研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 423-428.
[10] 许丽妹, 吴海燕, 林海丽, 吉顺妮, 陈春汝, 符娇娇, 陈忠仁, 吴小妹. 机械通气患者呼吸机相关性肺炎的风险分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 447-451.
[11] 孙一茜, 孔祥静, 付启梅, 王荣花, 张静文. 多模式肺康复训练系统在重症肺炎患者康复期中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 472-474.
[12] 尤宁, 秦卫, 徐斌, 彭一莲, 杨小玉. 慢性阻塞性肺疾病并发重症社区获得性肺炎预后风险预测[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 479-482.
[13] 王燕, 曹胜军, 王淑杰, 周秀梅, 郭蕊. 急危重患者人工气道临床管理措施的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 487-490.
[14] 张继保, 任虎, 陈芳. 醒脾养儿颗粒联合西医治疗小儿肺炎后胃肠功能紊乱的疗效及证候积分[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 282-285.
[15] 朱其菲, 张莎莎. 187例肺炎支原体感染的哮喘患儿骨膜素、肌腱蛋白-C、sST2水平特征及对哮喘急性发作的影响[J/OL]. 中华卫生应急电子杂志, 2025, 11(02): 73-80.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?