切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2024, Vol. 17 ›› Issue (06) : 496 -501. doi: 10.3877/cma.j.issn.1674-6880.2024.06.010

综述

脓毒症相关性脑病信号通路的研究进展
丁莉1,2, 沈沛1, 何国丽1, 黄山1, 黄家明1, 罗遵伟1, 薛娇2, 周满红1,2,()   
  1. 1.563000 贵州遵义,遵义医科大学附属医院急诊科
    2.564500 贵州仁怀,贵州茅台医院急诊科
  • 收稿日期:2024-05-05 出版日期:2024-12-31
  • 通信作者: 周满红
  • 基金资助:
    国家自然科学基金项目(82060346)遵义市科技计划项目[遵市科合HZ 字(2022)287、221 号]急诊医学专业学位研究生课程案例库[黔教合YJSCXJH(2018)092]

Ll Ding, Pei Shen, Guoli He, Shan Huang, Jiaming Huang, Zunwei Luo, Jiao Xue, Manhong Zhou()   

  • Received:2024-05-05 Published:2024-12-31
  • Corresponding author: Manhong Zhou
引用本文:

丁莉, 沈沛, 何国丽, 黄山, 黄家明, 罗遵伟, 薛娇, 周满红. 脓毒症相关性脑病信号通路的研究进展[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(06): 496-501.

Ll Ding, Pei Shen, Guoli He, Shan Huang, Jiaming Huang, Zunwei Luo, Jiao Xue, Manhong Zhou. [J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2024, 17(06): 496-501.

1
Davies K, McLaren JE.Destabilisation of T cell-dependent humoral immunity in sepsis [J].Clin Sci(Lond), 2024, 138 (1): 65-85.
2
Wang W, Liu CF.Sepsis heterogeneity [J].World J Pediatr, 2023, 19 (10): 919-927.
3
高芮,马晓媛,梁华平,等.脓毒症治疗药物的研究进展[J/CD].中华危重症医学杂志(电子版),2024,17(2):155-163.
4
Thompson K, Venkatesh B, Finfer S.Sepsis and septic shock: current approaches to management [J].Intern Med J, 2019, 49 (2): 160-170.
5
Sonneville R, Benghanem S, Jeantin L, et al.The spectrum of sepsis-associated encephalopathy: a clinical perspective[J].Crit Care, 2023, 27 (1): 386.
6
周爽,赵敏.细胞焦亡在脓毒症相关性脑病中的作用研究进展[J/CD].中华危重症医学杂志(电子版),2023,16(3):240-244.
7
Chen J, Shi X, Diao M, et al.A retrospective study of sepsis-associated encephalopathy: epidemiology,clinical features and adverse outcomes[J].BMC Emerg Med, 2020, 20 (1): 77.
8
Yang K, Chen J, Wang T, et al.Pathogenesis of sepsis-associated encephalopathy: more than blood-brain barrier dysfunction [J].Mol Biol Rep, 2022, 49 (10):10091-10099.
9
Ren C, Yao RQ, Zhang H, et al.Sepsis-associated encephalopathy: a vicious cycle of immunosuppression[J].J Neuroinflammation, 2020, 17 (1): 14.
10
Wang K, Sun M, Juan Z, et al.The Improvement of sepsis-associated encephalopathy by P2X7R inhibitor through inhibiting the Omi / HtrA2 apoptotic signaling pathway[J].Behav Neurol, 2022: 3777351.
11
Gao Q, Hernandes MS.Sepsis-associated encephalopathyandblood-brainbarrierdysfunction [J].Inflammation, 2021, 44 (6): 2143-2150.
12
Zhu DD, Huang YL, Guo SY, et al.AQP4 aggravates cognitive impairment in sepsis-associated encephalopathy through inhibiting Nav 1.6-mediated astrocyte autophagy[J].Adv Sci (Weinh), 2023, 10 (14): e2205862.
13
Mein N, von Stackelberg N, Wickel J, et al.Low-dose PLX5622 treatment prevents neuroinflammatory and neurocognitivesequelaeaftersepsis[J].J Neuroinflammation, 2023, 20 (1): 289.
14
Gao S, Jiang Y, Chen Z, et al.Metabolic reprogramming of microglia in sepsis-associated encephalopathy:insightsfromneuroinflammation[J].Curr Neuropharmacol, 2023, 21 (9): 1992-2005.
15
Yu H, Lin L, Zhang Z, et al.Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study [J].Signal Transduct Target Ther, 2020,5 (1): 209.
16
Guo Q, Jin Y, Chen X, et al.NF-κB in biology and targeted therapy: new insights and translational implications [J].Signal Transduct Target Ther, 2024, 9(1): 53.
17
Wu Z, Berlemann LA, Bader V, et al.LUBAC assembles a ubiquitin signaling platform at mitochondria for signal amplification and transport of NF-κB to the nucleus[J].EMBO J, 2022, 41 (24): e112006.
18
Fu J, Wu H.Structural mechanisms of NLRP3 inflammasome assembly and activation [J].Annu Rev Immunol, 2023 (41): 301-316.
19
Xu X, Qin Z, Zhang C, et al.TRIM29 promotes podocyte pyroptosis in diabetic nephropathy through the NF-kB / NLRP3 inflammasome pathway [J].Cell Biol Int, 2023, 47 (6): 1126-1135.
20
张建楠,刘文,昌广平,等.核苷酸结合寡聚化结构域样受体蛋白3 炎性小体在脓毒症急性肾损伤大鼠肾脏组织的表达及其影响[J/CD].中华危重症医学杂志(电子版),2020,13(1):55-59.
21
Chen S, Tang C, Ding H, et al.Maf1 ameliorates sepsis-associated encephalopathy by suppressing the NFκB/NLRP3 inflammasome signaling pathway [J].Front Immunol, 2020 (11): 594071.
22
Wu J, Han Y, Xu H, et al.Deficient chaperonemediated autophagy facilitates LPS-induced microglial activation via regulation of the p300 / NF-κB / NLRP3 pathway[J].Sci Adv, 2023, 9 (40): eadi8343.
23
Zhou S, Li Y, Hong Y, et al.Puerarin protects against sepsis-associated encephalopathy by inhibiting NLRP3 / Caspase-1 / GSDMD pyroptosis pathway and reducing blood-brain barrier damage [J].Eur J Pharmacol, 2023 (945): 175616.
24
Xie K, Zhang Y, Wang Y, et al.Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation[J].Inflamm Res, 2020, 69(7): 697-710.
25
Zhu M, Long S, Tao Y, et al.The P38MAPK / ATF2 signaling pathway is involved in PND in mice [J].Exp Brain Res, 2024, 242 (1): 109-121.
26
Ya J, Bayraktutan U.Senolytics and senomorphics targeting p38MAPK / NF-κB pathway protect endothelial cellsfromoxidativestress-mediatedpremature senescence[J].Cells, 2024, 13 (15): 1292.
27
Shen Y, Zhang Y, Du J, et al.CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway [J].J Neuroinflammation, 2021, 18(1): 246.
28
Huang L, Chen J, Li X, et al.Polydatin improves sepsis-associated encephalopathy by activating Sirt1 and reducing p38 phosphorylation [J].J Surg Res, 2022(276): 379-393.
29
Xu B, Li M, Cheng T, et al.Resolvin D1 protects against sepsis-associated encephalopathy in mice by inhibiting neuro-inflammation induced by microglia[J].Am J Transl Res, 2022, 14 (9): 6737-6750.
30
Jin M, Fang J, Wang JJ, et al.Regulation of toll-like receptor (TLR) signaling pathways in atherosclerosis:from mechanisms to targeted therapeutics [J].Acta Pharmacol Sin, 2023, 44 (12): 2358-2375.
31
Lashgari NA, Roudsari NM, Shamsnia HS, et al.TLR/mTOR inflammatory signaling pathway: novel insight for the treatment of schizophrenia [J].Can J Physiol Pharmacol, 2024, 102 (3): 150-160.
32
Xia YM, Guan YQ, Liang JF, et al.TAK-242 improves sepsis-associated acute kidney injury in rats by inhibiting the TLR4 / NF-κB signaling pathway[J].Ren Fail, 2024, 46 (1): 2313176.
33
Cai Q, Zhao C, Xu Y, et al.Qingda granule alleviates cerebral ischemia/reperfusion injury by inhibiting TLR4/NF-κB / NLRP3 signaling in microglia [J].J Ethnopharmacol, 2024 (324): 117712.
34
Kikuchi DS, Campos ACP, Qu H, et al.Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associatedencephalopathy[J].J Neuroinflammation, 2019, 16 (1): 241.
35
Uruno A, Yamamoto M.The KEAP1-NRF2 system and neurodegenerative diseases [J].Antioxid Redox Signal,2023, 38 (13-15): 974-988.
36
Che J, Yang X, Jin Z, et al.Nrf2: a promising therapeutic target in bone-related diseases [J].Biomed Pharmacother, 2023 (168): 115748.
37
Wang X, Zhou T, Yang X, et al.DDRGK1 enhances osteosarcoma chemoresistance via inhibiting KEAP1-mediated NRF2 ubiquitination [J].Adv Sci (Weinh),2023, 10 (14): e2204438.
38
Cui W, Chen J, Yu F, et al.GYY4137 protected the integrity of the blood-brain barrier via activation of the Nrf2/ARE pathway in mice with sepsis [J].FASEB J,2021, 35 (7): e21710.
39
Pu Y, Zhao L, Xi Y, et al.The protective effects of Mirtazapine against lipopolysaccharide (LPS)-induced brain vascular hyperpermeability [J].Bioengineered,2022, 13 (2): 3680-3693.
40
Wang J, Zhu Q, Wang Y, et al.Irisin protects against sepsis-associatedencephalopathybysuppressing ferroptosis via activation of the Nrf2 / GPX4 signal axis[J].Free Radic Biol Med, 2022 (187): 171-184.
41
Tian Y, Wang L, Fan X, et al.β-patchoulene alleviates cognitive dysfunction in a mouse model of sepsis associated encephalopathy by inhibition of microglia activation through Sirt1 / Nrf2 signaling pathway [J].PLoS One, 2023, 18 (1): e0279964.
42
Zhang Y, Chen J, Wu H, et al.Hydrogen regulates mitochondrial quality to protect glial cells and alleviates sepsis-associated encephalopathy by Nrf2/YY1 complex promoting HO-1 expression [J].Int Immunopharmacol,2023 (118): 110009.
43
Abdul-Muneer PM.Nrf2 as a potential therapeutic target for traumatic brain injury [J].J Integr Neurosci,2023, 22 (4): 81.
44
Glaviano A, Foo ASC, Lam HY, et al.PI3K / AKT /mTOR signaling transduction pathway and targeted therapies in cancer[J].Mol Cancer, 2023, 22 (1): 138.
45
Pan T, Sun S, Chen Y, et al.Immune effects of PI3K/Akt / HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis [J].Crit Care, 2022, 26 (1):29.
46
Geng H, Zhang H, Cheng L, et al.Sivelestat ameliorates sepsis-induced myocardial dysfunction by activating the PI3K / AKT / mTOR signaling pathway[J].Int Immunopharmacol, 2024 (128): 111466.
47
樊恒,孙敏,朱建华.红景天苷通过抑制PI3K/AKT/mTOR 信号通路对大鼠脓毒症急性肾损伤的保护作用[J/CD].中华危重症医学杂志(电子版),2024,17(3):188-195.
48
Li R, Zheng Y, Zhang J, et al.Gomisin N attenuated cerebral ischemia-reperfusion injury through inhibition of autophagy by activating the PI3K/AKT/mTOR pathway[J].Phytomedicine, 2023 (110): 154644.
49
Guan S, Sun L, Wang X, et al.Propofol inhibits neuroinflammation and metabolic reprogrammingin microglia in vitro and in vivo [J].Front Pharmacol,2023 (14): 1161810.
50
Bhattacharya R, Alam MR, Kamal MA, et al.AGERAGE axis culminates into multiple pathogenic processes: a central road to neurodegeneration[J].Front Mol Neurosci, 2023 (16): 1155175.
51
Reddy VP, Aryal P, Soni P.RAGE inhibitors in neurodegenerative diseases [J].Biomedicines, 2023, 11 (4):1131.
52
Rocha M, Vieira A, Michels M, et al.Effects of S100B neutralization on the long-term cognitive impairment and neuroinflammatory response in an animal model of sepsis[J].Neurochem Int, 2021 (142):104906.
53
Langeh U, Singh S.Targeting S100B protein as a surrogate biomarker and its role in various neurological disorders[J].Curr Neuropharmacol, 2021, 19 (2): 265-277.
54
Zhang L, Jiang Y, Deng S, et al.S100B / RAGE /Ceramide signaling pathway is involved in sepsisassociated encephalopathy [J].Life Sci, 2021 (277):119490.
55
Moysa A, Steczkiewicz K, Niedzialek D, et al.A model of full-length RAGE in complex with S100B[J].Structure, 2021, 29 (9): 989-1002.e6.
56
Gayger-Dias V, Vizuete AF, Rodrigues L, et al.How S100B crosses brain barriers and why it is considered a peripheral marker of brain injury [J].Exp Biol Med(Maywood), 2023, 248 (22): 2109-2119.
57
Huang L, Zhang L, Liu Z, et al.Pentamidine protects mice from cecal ligation and puncture-induced brain damage via inhibiting S100B / RAGE / NF-κB [J].Biochem Biophys Res Commun, 2019, 517 (2): 221-226.
58
Calvo-Enrique L, Lisa S, Vicente-García C, et al.Enhanced TrkA signaling impairs basal forebraindependent behavior [J].Front Mol Neurosci, 2023 (16):1266983.
59
Zhang L, Peng X, Ai Y, et al.Amitriptyline reduces sepsis-induced brain damage through TrkA signaling pathway[J].J Mol Neurosci, 2020, 70 (12): 2049-2057.
60
彭适,李欢,陈娟娟,等.铁死亡的发生机制及其在脓毒症中的研究进展[J/CD].中华危重症医学杂志(电子版),2022,15(6):500-504.
61
Gao J, Wang Y, Ma S, et al.Secukinumab alleviates cognitive impairment by attenuating oxidative stress and neuronal apoptosis via the IL-17RA / AKT / ERK1 / 2 pathway in a rat model of sepsis[J].Exp Neurol, 2023(359): 114263.
62
Jing G, Zuo J, Fang Q, et al.Erbin protects against sepsis-associatedencephalopathybyattenuating microglia pyroptosis via IRE1α/Xbp1s-Ca2+ axis [J].J Neuroinflammation, 2022, 19 (1): 237.
63
Li Y, Fan Z, Jia Q, et al.Chaperone-mediated autophagy (CMA) alleviates cognitive impairment by reducingneuronaldeathinsepsis-associated encephalopathy (SAE)[J].Exp Neurol, 2023 (365):114417.
64
Jiang S, Shi D, Bai L, et al.Inhibition of interleukin-6 trans-signaling improves survival and prevents cognitive impairment in a mouse model of sepsis[J].Int Immunopharmacol, 2023 (119): 110169.
No related articles found!
阅读次数
全文


摘要