切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2024, Vol. 17 ›› Issue (04) : 336 -341. doi: 10.3877/cma.j.issn.1674-6880.2024.04.012

综述

CCL2作为心血管疾病潜在治疗靶点的前景与挑战
庞慧1, 李新立1,()   
  1. 1. 210029 南京,南京医科大学第一附属医院心内科
  • 收稿日期:2023-05-17 出版日期:2024-08-31
  • 通信作者: 李新立
  • 基金资助:
    国家自然科学基金重点资助项目(81730106); 国家重点研发计划项目(2017YFC1700505); 江苏省自然科学基金项目(BK20190158)
  • Received:2023-05-17 Published:2024-08-31
引用本文:

庞慧, 李新立. CCL2作为心血管疾病潜在治疗靶点的前景与挑战[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 336-341.

免疫细胞定向迁移是机体免疫应答发生与完成的必备环节。趋化因子在其受体介导下,控制免疫细胞在循环系统与组织器官间定向迁移。若趋化因子及其受体的表达与功能出现异常,将直接影响免疫细胞的定向迁移,致使其不能在正确的位置行使正确的功能。因此,以趋化因子及其受体分子为生物治疗靶点,通过激活或抑制该信号通路,调控免疫系统功能行使的各个环节,有望成为控制与治疗相关疾病的新突破。CC趋化因子配体2[chemokine (C-C motif) ligand 2,CCL2]也称为单核细胞趋化蛋白1(monocyte chemoattractant protein-1,MCP-1),其受体为CC趋化因子受体2[chemokine (C-C motif) receptor 2,CCR2],是趋化因子CC亚家族中的重要成员,对于免疫细胞具有趋化活性,可调节其迁移与浸润。CCL2是一个多功能的细胞因子,参与多种疾病的发生发展,包括心力衰竭[1]、冠状动脉粥样硬化性心脏病[2]、高血压[3]、动脉粥样硬化、高脂血症、糖尿病、肿瘤、自身免疫性疾病、神经系统疾病等。本研究结合既往文献报道,主要就CCL2在心血管疾病中的研究进展作一综述。

1
Hanna A, Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure[J]. Cardiovasc Drugs Ther, 2020, 34 (6): 849-863.
2
Starodubova AV, Shaposhnikova NN, Varaeva YR, et al. The influence of diet therapy and regular physical trainings on monocyte chemoattractant protein-1 (MCP-1) secretion by monocytes among obese patients with coronary heart disease[J]. Vopr Pitan, 2024, 93 (2): 63-72.
3
Mikolajczyk TP, Szczepaniak P, Vidler F, et al. Role of inflammatory chemokines in hypertension[J]. Pharmacol Ther, 2021 (223): 107799.
4
黄一桂,陈钰,符征高,等.血浆单核细胞趋化蛋白1、可溶性髓系细胞触发受体1及高迁移率族蛋白B1水平对急性肺损伤患者病情及预后的评估价值[J/CD].中华危重症医学杂志(电子版)202114(1):25-29.
5
Miller MC, Mayo KH. Chemokines from a structural perspective[J]. Int J Mol Sci, 2017, 18 (10): 2088.
6
Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies[J]. Immunol Cell Biol, 2015, 93 (4): 372-383.
7
Chen B, Frangogiannis NG. Chemokines in myocardial infarction[J]. J Cardiovasc Transl Res, 2021, 14 (1): 35-52.
8
Huertas A, Tu L, Humbert M, et al. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator[J]. Cardiovasc Res, 2020, 116 (5): 885-893.
9
Gschwandtner M, Derler R, Midwood KS. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis[J]. Front Immunol, 2019 (10): 2759.
10
Patel B, Bansal SS, Ismahil MA, et al. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload[J]. JACC Basic Transl Sci, 2018, 3 (2): 230-244.
11
Tan X, Hu L, Shu Z, et al. Role of CCR2 in the development of streptozotocin-treated diabetic cardiomyopathy[J]. Diabetes, 2019, 68 (11): 2063-2073.
12
Moore-Morris T, Cattaneo P, Guimaraes-Camboa N, et al. Infarct fibroblasts do not derive from bone marrow lineages[J]. Circ Res, 2018, 122 (4): 583-590.
13
Kanisicak O, Khalil H, Ivey MJ, et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart[J]. Nat Commun, 2016 (7): 12260.
14
Alex L, Frangogiannis NG. The cellular origin of activated fibroblasts in the infarcted and remodeling myocardium[J]. Circ Res, 2018, 122 (4): 540-542.
15
Zhang W, Zhu T, Chen L, et al. MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR[J]. Am J Physiol Heart Circ Physiol, 2020, 318 (1): H59-H71.
16
Mao R, Yang R, Chen X, et al. Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses[J]. Cell Mol Immunol, 2017, 14 (5): 412-422.
17
Huang Y, Wang D, Wang X, et al. Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction[J]. Sci Rep, 2016 (6): 32660.
18
Jiang Y, Bai J, Tang L, et al. Anti-CCL21 antibody attenuates infarct size and improves cardiac remodeling after myocardial infarction[J]. Cell Physiol Biochem, 2015, 37 (3): 979-990.
19
Mylonas KJ, Turner NA, Bageghni SA, et al. 11β-HSD1 suppresses cardiac fibroblast CXCL2, CXCL5 and neutrophil recruitment to the heart post MI[J]. J Endocrinol, 2017, 233 (3): 315-327.
20
Mühlstedt S, Ghadge SK, Duchene J, et al. Cardiomyocyte-derived CXCL12 is not involved in cardiogenesis but plays a crucial role in myocardial infarction[J]. J Mol Med (Berl), 2016, 94 (9): 1005-1014.
21
Grisanti LA, Traynham CJ, Repas AA, et al. β2-adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury[J]. Proc Natl Acad Sci USA, 2016, 113 (52): 15126-15131.
22
Wang J, Seo MJ, Deci MB, et al. Effect of CCR2 inhibitor-loaded lipid micelles on inflammatory cell migration and cardiac function after myocardial infarction[J]. Int J Nanomedicine, 2018 (13): 6441-6451.
23
Zhang H, Yang K, Chen F, et al. Role of the CCL2-CCR2 axis in cardiovascular disease: pathogenesis and clinical implications[J]. Front Immunol, 2022 (13): 975367.
24
Pinto AR, Ilinykh A, Ivey MJ, et al. Revisiting cardiac cellular composition[J]. Circ Res, 2016, 118 (3): 400-409.
25
Leid J, Carrelha J, Boukarabila H, et al. Primitive embryonic macrophages are required for coronary development and maturation[J]. Circ Res, 2016, 118 (10): 1498-1511.
26
Bajpai G, Bredemeyer A, Li W, et al. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury[J]. Circ Res, 2019, 124 (2): 263-278.
27
Sager HB, Hulsmans M, Lavine KJ, et al. Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure[J]. Circ Res, 2016, 119 (7): 853-864.
28
Sierra-Filardi E, Nieto C, Domínguez-Soto A, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile[J]. J Immunol, 2014, 192 (8): 3858-3867.
29
Frangogiannis NG, Dewald O, Xia Y, et al. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy[J]. Circulation, 2007, 115 (5): 584-592.
30
Lu W, Xie Z, Tang Y, et al. Photoluminescent mesoporous silicon nanoparticles with siCCR2 improve the effects of mesenchymal stromal cell transplantation after acute myocardial infarction[J]. Theranostics, 2015, 5 (10): 1068-1082.
31
Wei Z, Spizzo I, Diep H, et al. Differential phenotypes of tissue-infiltrating T cells during angiotensin II-induced hypertension in mice[J]. PLoS One, 2014, 9 (12): e114895.
32
Capers Q 4th, Alexander RW, Lou P, et al. Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats[J]. Hypertension, 1997, 30 (6): 1397-1402.
33
Maffei A, Lembo G. Mapping monocyte subsets to identify cardiovascular risk[J]. Cardiovasc Res, 2019, 115 (6): 989-991.
34
Santisteban MM, Ahmari N, Carvajal JM, et al. Involvement of bone marrow cells and neuroinflammation in hypertension[J]. Circ Res, 2015, 117 (2): 178-191.
35
Kashyap S, Osman M, Ferguson CM, et al. Ccl2 deficiency protects against chronic renal injury in murine renovascular hypertension[J]. Sci Rep, 2018, 8 (1): 8598.
36
Kashyap S, Warner GM, Hartono SP, et al. Blockade of CCR2 reduces macrophage influx and development of chronic renal damage in murine renovascular hypertension[J]. Am J Physiol Renal Physiol, 2016, 310 (5): F372-F384.
37
Shen JZ, Morgan J, Tesch GH, et al. CCL2-dependent macrophage recruitment is critical for mineralocorticoid receptor-mediated cardiac fibrosis, inflammation, and blood pressure responses in male mice[J]. Endocrinology, 2014, 155 (3): 1057-1066.
38
Elmarakby AA, Quigley JE, Olearczyk JJ, et al. Chemokine receptor 2b inhibition provides renal protection in angiotensin II-salt hypertension[J]. Hypertension, 2007, 50 (6): 1069-1076.
39
Bush E, Maeda N, Kuziel WA, et al. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension[J]. Hypertension, 2000, 36 (3): 360-363.
40
Liao TD, Yang XP, Liu YH, et al. Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension[J]. Hypertension, 2008, 52 (2): 256-263.
41
Khambhati J, Engels M, Allard-Ratick M, et al. Immunotherapy for the prevention of atherosclerotic cardiovascular disease: promise and possibilities[J]. Atherosclerosis, 2018 (276): 1-9.
42
Winter C, Soehnlein O. The potential of chronopharmacology for treatment of atherosclerosis[J]. Curr Opin Lipidol, 2018, 29 (5): 368-374.
43
Winter C, Silvestre-Roig C, Ortega-Gomez A, et al. Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis[J]. Cell Metab, 2018, 28 (1): 175-182.e5.
44
Nguyen KD, Fentress SJ, Qiu Y, et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes[J]. Science, 2013, 341 (6153): 1483-1488.
45
Schloss MJ, Hilby M, Nitz K, et al. Ly6Chigh monocytes oscillate in the heart during homeostasis and after myocardial infarction-brief report[J]. Arterioscler Thromb Vasc Biol, 2017, 37 (9): 1640-1645.
46
Huang S, Frangogiannis NG. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges[J]. Br J Pharmacol, 2018, 175 (9): 1377-1400.
No related articles found!
阅读次数
全文


摘要