切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2024, Vol. 17 ›› Issue (01) : 56 -61. doi: 10.3877/cma.j.issn.1674-6880.2024.01.010

综述

大脑奖赏系统调控外周免疫功能的研究进展
王明汉1, 程宝莉1,()   
  1. 1. 310003 杭州,浙江大学医学院附属第一医院余杭院区麻醉科
  • 收稿日期:2023-12-24 出版日期:2024-02-29
  • 通信作者: 程宝莉
  • 基金资助:
    国家自然科学基金项目(82372177、81971876)
  • Received:2023-12-24 Published:2024-02-29
引用本文:

王明汉, 程宝莉. 大脑奖赏系统调控外周免疫功能的研究进展[J]. 中华危重症医学杂志(电子版), 2024, 17(01): 56-61.

人类及高等动物的中枢神经系统具有奖赏机制,可使机体对那些能带来快感的事物做出反应,形成进食、繁衍等基本生命活动的驱动力,在感觉、应激、动机、抑郁症和成瘾等相关生理和病理行为中发挥重要作用。大脑的某些脑区中存在着对奖励有反应的神经元,这些脑区组成了一个复杂、庞大的神经回路,称之为中枢奖赏系统,该系统包含的脑区十分广泛,如前额叶皮层(prefrontal cortex,PFC)、前扣带回、纹状体、腹侧被盖区(ventral tegmental area,VTA)、杏仁核、海马等[1]。近年来,中枢神经系统对外周免疫的作用研究成为新型免疫调控的热点,中枢奖赏系统对外周感染和肿瘤免疫的作用也逐渐引起研究者的重视。因此,本研究将综述中枢神经奖赏系统对外周免疫系统的调控作用、调控机制以及临床转化前景,为今后中枢调节外周免疫治疗提供新的思路和方案。

1
McKenna JT, Yang C, Bellio T, et al. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior[J]. Brain Struct Funct, 2021, 226 (6): 1755-1778.
2
Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain[J]. J Comp Physiol Psychol, 1954, 47 (6): 419-427.
3
Gandhi A, Mote J, Fulford D. A transdiagnostic meta-analysis of physical and social Anhedonia in major depressive disorder and schizophrenia spectrum disorders[J]. Psychiatry Res, 2022 (309): 114379.
4
Fox ME, Lobo MK. The molecular and cellular mechanisms of depression: a focus on reward circuitry[J]. Mol Psychiatry, 2019, 24 (12): 1798-1815.
5
Buck SA, Torregrossa MM, Logan RW, et al. Roles of dopamine and glutamate co-release in the nucleus accumbens in mediating the actions of drugs of abuse[J]. FEBS J, 2021, 288 (5): 1462-1474.
6
Zhu L, Zheng D, Li R, et al. Induction of anxiety-like phenotypes by knockdown of cannabinoid type-1 receptors in the amygdala of marmosets[J]. Neurosci Bull, 2023, 39 (11): 1669-1682.
7
Ben-Shaanan TL, Azulay-Debby H, Dubovik T, et al. Activation of the reward system boosts innate and adaptive immunity[J]. Nat Med, 2016, 22 (8): 940-944.
8
Ben-Shaanan TL, Schiller M, Azulay-Debby H, et al. Modulation of anti-tumor immunity by the brain's reward system[J]. Nat Commun, 2018, 9 (1): 2723.
9
Kayama T, Ikegaya Y, Sasaki T. Phasic firing of dopaminergic neurons in the ventral tegmental area triggers peripheral immune responses[J]. Sci Rep, 2022, 12 (1): 1447.
10
Sato D, Hamada Y, Narita M, et al. Tumor suppression and improvement in immune systems by specific activation of dopamine D1-receptor-expressing neurons in the nucleus accumbens[J]. Mol Brain, 2022, 15 (1): 17.
11
Saurer TB, Ijames SG, Lysle DT. Evidence for the nucleus accumbens as a neural substrate of heroin-induced immune alterations[J]. J Pharmacol Exp Ther, 2009, 329 (3): 1040-1047.
12
Ezzyat Y, Inhoff MC, Davachi L. Differentiation of human medial prefrontal cortex activity underlies long-term resistance to forgetting in memory[J]. J Neurosci, 2018, 38 (48): 10244-10254.
13
Debnath M, Berk M, Maes M. Translational evidence for the Inflammatory Response System (IRS)/Compensatory Immune Response System (CIRS) and neuroprogression theory of major depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021 (111): 110343.
14
Han KM, Tae WS, Kim A, et al. Serum FAM19A5 levels: a novel biomarker for neuroinflammation and neurodegeneration in major depressive disorder[J]. Brain Behav Immun, 2020 (87): 852-859.
15
Janak PH, Tye KM. From circuits to behaviour in the amygdala[J]. Nature, 2015, 517 (7534): 284-292.
16
Ferrara NC, Trask S, Rosenkranz JA. Maturation of amygdala inputs regulate shifts in social and fear behaviors: a substrate for developmental effects of stress[J]. Neurosci Biobehav Rev, 2021 (125): 11-25.
17
Zhang X, Lei B, Yuan Y, et al. Brain control of humoral immune responses amenable to behavioural modulation[J]. Nature, 2020, 581 (7807): 204-208.
18
Ressler KJ, Berretta S, Bolshakov VY, et al. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits[J]. Nat Rev Neurol, 2022, 18 (5): 273-288.
19
Devi RS, Namasivayam A, Prabhakaran K. Modulation of non-specific immunity by hippocampal stimulation[J]. J Neuroimmunol, 1993, 42 (2): 193-197.
20
Beier KT, Steinberg EE, Deloach KE, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping[J]. Cell, 2015, 162 (3): 622-634.
21
Matt SM, Gaskill PJ. Where is dopamine and how do immune cells see it?: Dopamine-mediated immune cell function in health and disease[J]. J Neuroimmune Pharmacol, 2020, 15 (1): 114-164.
22
Mackie PM, Gopinath A, Montas DM, et al. Functional characterization of the biogenic amine transporters on human macrophages[J]. JCI Insight, 2022, 7 (4): e151492.
23
Gopinath A, Mackie PM, Phan LT, et al. Who knew? Dopamine transporter activity is critical in innate and adaptive immune responses[J]. Cells, 2023, 12 (2): 269.
24
Hansen KB, Wollmuth LP, Bowie D, et al. Structure, function, and pharmacology of glutamate receptor ion channels[J]. Pharmacol Rev, 2022, 73 (4): 298-487.
25
Zhang S, Edwards TN, Chaudhri VK, et al. Nonpeptidergic neurons suppress mast cells via glutamate to maintain skin homeostasis[J]. Cell, 2021, 184 (8): 2151-2166.e16.
26
Zahid U, Onwordi EC, Hedges EP, et al. Neurofunctional correlates of glutamate and GABA imbalance in psychosis: a systematic review[J]. Neurosci Biobehav Rev, 2023 (144): 105010.
27
Tsuchiya H, Shinonaga R, Sakaguchi H, et al. NEAT1 confers radioresistance to hepatocellular carcinoma cells by inducing PINK1/parkin-mediated mitophagy[J]. Int J Mol Sci, 2022, 23 (22): 14397.
28
Li RQ, Zhao XH, Zhu Q, et al. Exploring neurotransmitters and their receptors for breast cancer prevention and treatment[J]. Theranostics, 2023, 13 (3): 1109-1129.
29
Abdou AM, Higashiguchi S, Horie K, et al. Relaxation and immunity enhancement effects of gamma-aminobutyric acid (GABA) administration in humans[J]. Biofactors, 2006, 26 (3): 201-208.
30
Huang D, Wang Y, Thompson JW, et al. Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression[J]. Nat Cell Biol, 2022, 24 (2): 230-241.
31
Zhang B, Vogelzang A, Miyajima M, et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity[J]. Nature, 2021, 599 (7885): 471-476.
32
Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit[J]. Science, 2011, 334 (6052): 98-101.
33
Tracey KJ. Reflex control of immunity[J]. Nat Rev Immunol, 2009, 9 (6): 418-428.
34
Guyot M, Simon T, Panzolini C, et al. Apical splenic nerve electrical stimulation discloses an anti-inflammatory pathway relying on adrenergic and nicotinic receptors in myeloid cells[J]. Brain Behav Immun, 2019 (80): 238-246.
35
Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation[J]. Nature, 2003, 421 (6921): 384-388.
36
Zhai Q, Lai D, Cui P, et al. Selective activation of basal forebrain cholinergic neurons attenuates polymicrobial sepsis-induced inflammation via the cholinergic anti-inflammatory pathway[J]. Crit Care Med, 2017, 45 (10): e1075-e1082.
37
Zhang L, Wu LL, Huan HB, et al. Sympathetic and parasympathetic innervation in hepatocellular carcinoma[J]. Neoplasma, 2017, 64 (6): 840-846.
38
Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression[J]. Science, 2013, 341 (6142): 1236361.
39
Shaashua L, Shabat-Simon M, Haldar R, et al. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial[J]. Clin Cancer Res, 2017, 23 (16): 4651-4661.
40
Grytli HH, Fagerland MW, Fossa SD, et al. Association between use of beta-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease[J]. Eur Urol, 2014, 65 (3): 635-641.
41
Kamiya A, Hayama Y, Kato S, et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression[J]. Nat Neurosci, 2019, 22 (8): 1289-1305.
42
Volz LJ, Hamada M, Michely J, et al. Modulation of I-wave generating pathways by theta-burst stimulation: a model of plasticity induction[J]. J Physiol, 2019, 597 (24): 5963-5971.
43
Zhao X, Li Y, Tian Q, et al. Repetitive transcranial magnetic stimulation increases serum brain-derived neurotrophic factor and decreases interleukin-1β and tumor necrosis factor-α in elderly patients with refractory depression[J]. J Int Med Res, 2019, 47 (5): 1848-1855.
44
Tateishi H, Mizoguchi Y, Kawaguchi A, et al. Changes in interleukin-1 beta induced by rTMS are significantly correlated with partial improvement of cognitive dysfunction in treatment-resistant depression: a pilot study[J]. Psychiatry Res, 2020 (289): 112995.
45
Boylu ME, Turan S, Güler EM, et al. Changes in neuroactive steroids, neurotrophins and immunological biomarkers after monotherapy 8-week rTMS treatment and their relationship with neurocognitive functions in depression[J/OL]. Eur Arch Psychiatry Clin Neurosci, 2023. https://doi.org/10.1007/s00406-023-01704-9. [published online ahead of print Nov 18, 2023].
46
张巧梅,孙小平,李冠胜,等.针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J/CD].中华危重症医学杂志(电子版)202316(4):265-271.
47
邢小炜,钱琦,金平.肝X受体β在电针治疗慢性脑缺血炎性损伤中的作用研究[J/CD].中华危重症医学杂志(电子版)202215(2):122-126.
48
Liu Y, Feng H, Mo Y, et al. Effect of soothing-liver and nourishing-heart acupuncture on early selective serotonin reuptake inhibitor treatment onset for depressive disorder and related indicators of neuroimmunology: a randomized controlled clinical trial[J]. J Tradit Chin Med, 2015, 35 (5): 507-513.
49
Corsi-Zuelli FMDG, Brognara F, Quirino GFDS, et al. Neuroimmune interactions in schizophrenia: focus on vagus nerve stimulation and activation of the alpha-7 nicotinic acetylcholine receptor[J]. Front Immunol, 2017 (8): 618.
No related articles found!
阅读次数
全文


摘要