切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2023, Vol. 16 ›› Issue (04) : 279 -285. doi: 10.3877/cma.j.issn.1674-6880.2023.04.003

论著

脓毒症合并心功能障碍患者早期肠道微生态改变的探讨
孟建标, 张庚, 焦燕娜()   
  1. 310012 杭州,浙江省立同德医院重症医学科
    310000 杭州,浙江大学康复医院重症医学科
    310003 杭州,浙江大学医学院附属第一医院重症医学科
  • 收稿日期:2023-05-27 出版日期:2023-08-31
  • 通信作者: 焦燕娜
  • 基金资助:
    浙江省基础公益研究计划项目(LGF18H150010)

Exploratory study on early intestinal microecological changes in patients with sepsis-induced myocardial dysfunction

Jianbiao Meng, Geng Zhang, Yanna Jiao()   

  1. Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
    Department of Critical Care Medicine, Zhejiang University Rehabilitation Hospital, Hangzhou 310000, China
    Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  • Received:2023-05-27 Published:2023-08-31
  • Corresponding author: Yanna Jiao
引用本文:

孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.

Jianbiao Meng, Geng Zhang, Yanna Jiao. Exploratory study on early intestinal microecological changes in patients with sepsis-induced myocardial dysfunction[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2023, 16(04): 279-285.

目的

探讨脓毒症合并心功能障碍患者的肠道微生态组成及多样性改变情况。

方法

本研究共纳入39例受试者,其中健康受试者13例(A组),脓毒症不合并心功能障碍者12例(B组),脓毒症合并心功能障碍者14例(C组)。入组当天完成血液和粪便标本采集以及超声心动图检查。检测并记录受试者的心肌肌钙蛋白T(cTnT)、人心型脂肪酸结合蛋白(HFABP)、氨基末端B型利钠肽(NT-proBNP)、左心室射血分数(LVEF)及降钙素原(PCT)水平。采用16S核糖体DNA(rDNA)测序对粪便中的菌群进行多样性分析,并比较各组间的菌群组成。

结果

3组受试者cTnT、HFABP、NT-proBNP、LVEF及PCT水平比较,差异均有统计学意义(H = 33.279、24.748、28.694、26.552、27.032,P均<0.001)。进一步两两比较发现,与B组相比较,C组患者cTnT、HFABP、NT-proBNP水平更高,而LVEF更低(P均<0.05)。Alpha多样性分析显示,3组受试者肠道菌群丰富度[Chao1指数及基于丰度的覆盖估计值(ACE)]、多样性(香农指数及辛普森指数)比较,差异均有统计学意义(H = 13.761、13.761、19.189、15.536,P均<0.05),且B、C两组肠道菌群丰富度、多样性均显著低于A组,C组肠道菌群多样性更低(P均<0.05)。Beta多样性分析显示,A、B、C组受试者肠道菌物种相似度比较,差异均有统计学意义[0.239(0.147,0.332)、0.001 (-0.164,0.049)、-0.212(-0.315,0.040),H = 22.599,P = 0.001],且B、C两组肠道菌群物种相似度与A组比较,差异均有统计学意义(P均<0.05)。3组受试者肠道微生物群中,梭状芽孢杆菌纲、芽孢杆菌纲、瘤胃球菌科、毛螺菌科、瘤胃球菌属及未定位的毛螺菌属细菌的相对丰度比较,差异均有统计学意义(H = 23.918、22.794、17.265、16.846、11.862、16.846,P均<0.05)。B、C组的梭状芽孢杆菌纲、瘤胃球菌科、毛螺菌科、瘤胃球菌属及未定位的毛螺菌属相对丰度均显著低于A组,且C组梭状芽孢杆菌纲、瘤胃球菌科、毛螺菌科的相对丰度更低(P均<0.05);B、C组芽孢杆菌的相对丰度均明显高于A组,且C组更高(P均<0.05)。

结论

脓毒症合并心功能障碍患者的心肌损伤标志物水平显著增高,同时肠道微生态多样性显著下降,主要表现为梭状芽孢杆菌、瘤胃球菌科及毛螺菌科细菌相对丰度减少,而芽孢杆菌的相对丰度增加。

Objective

To preliminarily clarify the changes of intestinal microecological composition and diversity in patients with sepsis-induced myocardial dysfunction.

Methods

A total of 39 subjects were enrolled in this study, including 13 healthy subjects (group A), 12 septic patients without myocardial dysfunction (group B) and 14 patients with sepsis-induced myocardial dysfunction (group C). Blood and feces samples were collected and echocardiography was performed on the day of enrollment. The cardiac troponin T (cTnT), human heart-type fatty acid binding protein (HFABP), N-terminal pro-brain natriuretic peptide (NT-proBNP), left ventricular ejection fraction (LVEF) and procalcitonin (PCT) were determined and recorded. The 16S ribosomal DNA (rDNA) sequencing was used to determine the bacterial sequence in the feces, and the composition of microflora among the three groups was compared.

Results

The levels of cTnT, HFABP, NT-proBNP, LVEF and PCT among the three groups all showed significant differences (H = 33.279, 24.748, 28.694, 26.552, 27.032; all P < 0.001). Further pairwise comparison found that compared with the group B, the levels of cTnT, HFABP and NT-proBNP in the group C were much higher, while the LVEF level was much lower (all P < 0.05). Alpha diversity analysis showed that the richness [Chao1 index and abundance-based coverage estimator (ACE)] and diversity (Shannon index and Simpson index) of bacterial flora among the three groups all showed significant differences (H = 13.761, 13.761, 19.189, 15.536; all P < 0.05). The richness and diversity of bacterial flora in groups B and C were much lower than those in the group A, and the diversity of bacterial flora in the group C was lowest (all P < 0.05). Beta diversity analysis showed that the similarities of bacterial flora among the three groups all showed significant differences [0.239 (0.147, 0.332), 0.001 (-0.164, 0.049), -0.212 (-0.315, 0.040); H = 22.599, P = 0.001]. The similarities of bacterial flora in groups B and C were statistically significantly different as compared with the group A (both P < 0.05). At the three levels of class, family and genus, the relative abundance of Clostridia, Bacillus, Ruminococcaceae, Lachnospiracea, Ruminococcus and Lachnospiracea_incertae_sedis among the three groups all showed significant differences (H = 23.918, 22.794, 17.265 16.846, 11.862, 16.846; all P < 0.05). The relative abundance of Clostridia, Ruminococcaceae, Lachnospiracea, Ruminococcus and Lachnospiracea_incertae_sedis in groups B and C was much lower than that in the group A, and the relative abundance of Clostridia, Ruminococcaceae and Lachnospiracea in the group C was lowest (all P < 0.05). The relative abundance of Bacillus in groups B and C was much higher than that in the group A, and it was highest in the group B (all P < 0.05).

Conclusion

The levels of myocardial injury biomarkers are increased and the diversity of intestinal microbiome is decreased significantly in patients with myocardial dysfunction induced by sepsis, which mainly shows as reduced abundance of Clostridia, Ruminococcaceae and Lachnospiracea, together with increased abundance of Bacillus.

表1 B、C组受试对象入组后一般资料的比较( ± s
表2 3组受试者心肌损伤生物标志物及PCT水平比较[MP25P75)]
图1 3组受试对象肠道菌群组成分析注:A组为健康受试者;B组为脓毒症不合并心功能障碍者;C组为脓毒症合并心功能障碍者;OTU.操作分类单元;ACE.基于丰度的覆盖估计值;PCoA.主坐标分析;a图为OTU丰度等级曲线,横坐标为样品OTU丰度排位(由高至低),纵坐标为OTU丰度,曲线越平缓,物种分布越均匀;b图为维恩图,交叠部分为两样本(组)间共有OTU数量,蓝色表示A组,红色表示B组,绿色表示C组;c ~ f图为Alpha多样性分析(与A组比较,aP<0.05;与B组比较,bP<0.05);g图为Beta多样性分析,横坐标(PCoA.1)和纵坐标(PCoA.2)为样本间差异解释度最大的两个主要成分,刻度是相对距离,无实际意义,图中每个点代表一个样本,点的不同颜色表示样本所属分组,分布越近的点表示样本越相似
图2 3组受试对象肠道微生态菌群相对丰度的比较注:A组为健康受试者;B组为脓毒症不合并心功能障碍者;C组为脓毒症合并心功能障碍者;与A组比较,aP<0.05;与B组比较,bP<0.05
1
Freund Y, Lemachatti N, Krastinova E, et al. Prognostic accuracy of sepsis-3 criteria for in-hospital mortality among patients with suspected infection presenting to the emergency department[J]. JAMA, 2017, 317 (3): 301-308.
2
Suzuki T, Suzuki Y, Okuda J, et al. Sepsis-induced cardiac dysfunction and β-adrenergic blockade therapy for sepsis[J]. J Intensive Care, 2017 (5): 22.
3
杨春,王成,陈婷,等.艾司洛尔对脓毒性休克患者心脏保护的临床研究[J/CD].中华危重症医学杂志(电子版)201912(1):15-19.
4
赖志珍,孟建标,胡马洪,等.左西孟旦对脓毒性休克患者血流动力学及心肌损伤标志物的影响[J/CD].中华危重症医学杂志(电子版)20169(3):163-168.
5
Manolis AA, Manolis TA, Melita H, et al. Gut microbiota and cardiovascular disease: symbiosis versus dysbiosis[J]. Curr Med Chem, 2022, 29 (23): 4050-4077.
6
Evans T, Ali U, Anderton R, et al. Lower gut dysbiosis and mortality in acute critical illness: a systematic review and meta-analysis [J]. Intensive Care Med Exp, 2023, 11 (1): 6.
7
王慧芳,王方岩,常平,等.肠道微生态与脓毒症[J/CD].中华危重症医学杂志(电子版)201811(6):415-419.
8
Adelman MW, Woodworth MH, Langelier C, et al. The gut microbiome's role in the development, maintenance, and outcomes of sepsis[J]. Crit Care, 2020, 24 (1): 278.
9
MacFie J, O'Boyle C, Mitchell CJ, et al. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity[J]. Gut, 1999, 45 (2): 223-228.
10
Shaw AG, Sim K, Randell P, et al. Late-onset bloodstream infection and perturbed maturation of the gastrointestinal microbiota in premature infants[J]. PLoS One, 2015, 10 (7): e0132923.
11
Freedberg DE, Zhou MJ, Cohen ME, et al. Pathogen colonization of the gastrointestinal microbiome at intensive care unit admission and risk for subsequent death or infection[J]. Intensive Care Med, 2018, 44 (8): 1203-1211.
12
Gong S, Yan Z, Liu Z, et al. Intestinal microbiota mediates the susceptibility to polymicrobial sepsis-induced liver injury by granisetron generation in mice[J]. Hepatology, 2019, 69 (4): 1751-1767.
13
Fay KT, Klingensmith NJ, Chen CW, et al. The gut microbiome alters immunophenotype and survival from sepsis[J]. FASEB J, 2019, 33 (10): 11258-11269.
14
Wilmore JR, Gaudette BT, Gomez Atria D, et al. Commensal microbes induce serum IgA responses that protect against polymicrobial sepsis[J]. Cell Host Microbe, 2018, 23 (3): 302-311.e3
15
杨佳,于君.饮食、肠道微生态与结直肠癌[J/CD].中华结直肠疾病电子杂志20198(6):541-545.
16
赵美琪,王婧,崔乃玲,等.短链脂肪酸与肠道疾病关系的研究进展[J].中国现代医药杂志202022(9):105-108.
17
Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness[J]. Crit Care Clin, 2016, 32 (2): 203-212.
18
Gharaie S, Noel S, Rabb H. Gut microbiome and AKI: roles of the immune system and short-chain fatty acids[J]. Nephron, 2020, 144 (12): 662-664.
19
Jacob JS, Ahmed A, Cholankeril G. The impact of alteration in gut microbiome in the pathogenesis of nonalcoholic fatty liver disease[J]. Curr Opin Infect Dis, 2021, 34 (5): 477-482.
20
Bajaj JS, Reddy KR, O'Leary JG, et al. Serum levels of metabolites produced by intestinal microbes and lipid moieties independently associated with acute-on-chronic liver failure and death in patients with cirrhosis[J]. Gastroenterology, 2020, 159 (5): 1715-1730.e12.
21
Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome[J]. Nat Microbiol, 2016, 1 (10): 16113.
22
Afouda P, Traore SI, Dione N, et al. Description and genomic characterization of Massiliimalia massiliensis gen. nov., sp. nov., and Massiliimalia timonensis gen. nov., sp. nov., two new members of the family Ruminococcaceae isolated from the human gut[J]. Antonie Van Leeuwenhoek, 2019, 112 (6): 905-918.
23
Xie J, Li LF, Dai TY, et al. Short-chain fatty acids produced by ruminococcaceae mediate α-linolenic acid promote intestinal stem cells proliferation[J]. Mol Nutr Food Res, 2022, 66 (1): e2100408.
24
Lee W, Hayakawa T, Kurihara Y, et al. Stomach and colonic microbiome of wild Japanese macaques[J]. Am J Primatol, 2021, 83 (5): e23242.
25
Chen W, Bi Z, Zhu Q, et al. An analysis of the characteristics of the intestinal flora in patients with Parkinson's disease complicated with constipation[J]. Am J Transl Res, 2021, 13 (12): 13710-13722.
26
包文晗,唐雯.初诊IgA肾病患者的肠道菌群及其与疾病进展因素的相关分析[J].北京大学学报(医学版)202355(1):124-132.
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[3] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[4] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[5] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[6] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[7] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[8] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[9] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[10] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[11] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 宏基因组二代测序在脓毒症病原体诊断中的应用进展[J]. 中华重症医学电子杂志, 2023, 09(03): 292-297.
[12] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[13] 李世明, 黄蔚, 刘玲. HMGB1介导脓毒症相关凝血功能障碍的作用机制及其治疗进展[J]. 中华重症医学电子杂志, 2023, 09(03): 269-273.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要