切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2022, Vol. 15 ›› Issue (02) : 163 -168. doi: 10.3877/cma.j.issn.1674-6880.2022.02.016

综述

烯醇化酶抑制剂对脊髓损伤后神经保护的研究进展
周志强1, 庾红林1, 解国辉1, 张钦1,()   
  1. 1. 044000 山西运城,长治医学院附属运城市中心医院脊柱外科
  • 收稿日期:2021-12-27 出版日期:2022-04-30
  • 通信作者: 张钦
  • 基金资助:
    山西省自然科学基金项目(201901D111472)
  • Received:2021-12-27 Published:2022-04-30
引用本文:

周志强, 庾红林, 解国辉, 张钦. 烯醇化酶抑制剂对脊髓损伤后神经保护的研究进展[J]. 中华危重症医学杂志(电子版), 2022, 15(02): 163-168.

1
KhorasanizadehM, YousefifardM, EskianM,et al.Neurological recovery following traumatic spinal cord injury: a systematic review and meta-analysis[J].J Neurosurg Spine,2019:1-17.
2
CaoHQ, DongED.An update on spinal cord injury research[J].Neurosci Bull,2013,29 (1):94-102.
3
Spinal Cord Injury (SCI) 2016 facts and figures at a glance[J]. J Spinal Cord Med, 2016, 39 (4): 493-494.
4
HurlbertRJ, HadleyMN, WaltersBC,et al.Pharmacological therapy for acute spinal cord injury[J].Neurosurgery,2013 (72Suppl 2):93-105.
5
MohammadiE, GhaediK, EsmailieA,et al.Gene expression profiling of liver X receptor α and Bcl-2-associated X protein in experimental transection spinal cord-injured rats[J].J Spinal Cord Med,2013,36 (1):66-71.
6
MortazaviMM, VermaK, HarmonOA,et al.The microanatomy of spinal cord injury: a review[J].Clin Anat,2015,28 (1):27-36.
7
PapastefanakiF, MatsasR.From demyelination to remyelination: the road toward therapies for spinal cord injury[J].Glia,2015,63 (7):1101-1125.
8
SulejczakD, TaraszewskaA, ChrapustaSJ,et al.Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier[J].Folia Neuropathol,2016,54 (4):392-404.
9
VarmaAK, DasA, WallaceG 4th,et al.Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers[J].Neurochem Res,2013,38 (5):895-905.
10
JungDW, KimWH, ParkSH,et al.A unique small molecule inhibitor of enolase clarifies its role in fundamental biological processes[J].ACS Chem Biol,2013,8 (6):1271-1282.
11
AlkabieS, BoileauAJ.The role of therapeutic hypothermia after traumatic spinal cord injury--a systematic review[J].World Neurosurg,2016 (86):432-449.
12
HaqueA, CaponeM, MatzelleD,et al.Targeting enolase in reducing secondary damage in acute spinal cord injury in rats[J].Neurochem Res,2017,42 (10):2777-2787.
13
PolcynR, CaponeM, MatzelleD,et al.Enolase inhibition alters metabolic hormones and inflammatory factors to promote neuroprotection in spinal cord injury[J].Neurochem Int,2020 (139):104788.
14
XuCM, LuoYL, LiS,et al.Multifunctional neuron-specific enolase: its role in lung diseases[J].Biosci Rep,2019,39 (11):BSR20192732.
15
PouwMH, KwonBK, VerbeekMM,et al.Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects[J].Spinal Cord,2014,52 (6):428-433.
16
DincelGC, AtmacaHT.Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection[J].Int J Immunopathol Pharmacol,2016,29 (2):226-240.
17
CiancarelliI, De AmicisD, Di MassimoC,et al.Influence of intensive multifunctional neurorehabilitation on neuronal oxidative damage in patients with Huntington's disease[J].Funct Neurol,2015,30 (1):47-52.
18
HajdukováL, SobekO, PrchalováD,et al.Biomarkers of brain damage: S100B and NSE concentrations in cerebrospinal fluid--a normative study[J].Biomed Res Int,2015:379071.
19
SahuS, NagDS, SwainA,et al.Biochemical changes in the injured brain[J].World J Biol Chem,2017,8 (1):21-31.
20
IlzeckiM, IlzeckaJ, PrzywaraS,et al.Serum neuron-specific enolase as a marker of brain ischemia-reperfusion injury in patients undergoing carotid endarterectomy[J].Acta Clin Croat,2016,55 (4):579-584.
21
ShihNY, LaiHL, ChangGC,et al.Anti-alpha-enolase autoantibodies are down-regulated in advanced cancer patients[J].Jpn J Clin Oncol,2010,40 (7):663-669.
22
HuZY, XiaoL, BodeAM,et al.Glycolytic genes in cancer cells are more than glucose metabolic regulators[J].J Mol Med (Berl),2014,92 (8):837-845.
23
MatsudaM, HuhY, JiRR.Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain[J].J Anesth,2019,33 (1):131-139.
24
HaqueA, PolcynR, MatzelleD,et al.New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection[J].Brain Sci,2018,8 (2):33.
25
HafnerA, ObermajerN, KosJ.γ-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways[J].Biochem J,2012,443 (2):439-450.
26
NobleLJ, DonovanF, IgarashiT,et al.Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events[J].J Neurosci,2002,22 (17):7526-7535.
27
KawasakiY, XuZZ, WangX,et al.Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain[J].Nat Med,2008,14 (3):331-336.
28
MiranpuriGS, MeethalSV, SampeneE,et al.Folic acid modulates matrix metalloproteinase-2 expression, alleviates neuropathic pain, and improves functional recovery in spinal cord-injured rats[J].Ann Neurosci,2017,24 (2):74-81.
29
MoghaddamA, HellerR, DanielV,et al.Exploratory study to suggest the possibility of MMP-8 and MMP-9 serum levels as early markers for remission after traumatic spinal cord injury[J].Spinal Cord,2017,55 (1):8-15.
30
MartinezVD, ThuKL, VucicEA,et al.Whole-genome sequencing analysis identifies a distinctive mutational spectrum in an arsenic-related lung tumor[J].J Thorac Oncol,2013,8 (11):1451-1455.
31
HuoX, ZhangG, WuC,et al.Electric field stimulation protects injured spinal cord from secondary inflammatory response in rats[J].Annu Int Conf IEEE Eng Med Biol Soc,2017:1958-1961.
32
ZhangH, TrivediA, LeeJU,et al.Matrix metalloproteinase-9 and stromal cell-derived factor-1 act synergistically to support migration of blood-borne monocytes into the injured spinal cord[J].J Neurosci,2011,31 (44):15894-15903.
33
ZabelMK, KirschWM.From development to dysfunction: microglia and the complement cascade in CNS homeostasis[J].Ageing Res Rev,2013,12 (3):749-756.
34
ChenX, ChenC, HaoJ,et al.Effect of CLIP3 upregulation on astrocyte proliferation and subsequent glial scar formation in the rat spinal cord via STAT3 pathway after injury[J].J Mol Neurosci,2018,64 (1):117-128.
35
LuppiP, KallasA, WahrenJ.Can C-peptide mediated anti-inflammatory effects retard the development of microvascular complications of type 1 diabetes?[J].Diabetes Metab Res Rev,2013,29 (5):357-362.
36
HaidetJ, CifarelliV, TruccoM,et al.Anti-inflammatory properties of C-peptide[J].Rev Diabet Stud,2009,6 (3):168-179.
37
ZhangQ, HuW, MengB,et al.PPARγ agonist rosiglitazone is neuroprotective after traumatic spinal cord injury via anti-inflammatory in adult rats[J].Neurol Res,2010,32 (8):852-859.
38
La CavaA.Leptin in inflammation and autoimmunity[J].Cytokine,2017 (98):51-58.
39
BecerrilS, RodríguezA, CatalánV,et al.Targeted disruption of the iNOS gene improves adipose tissue inflammation and fibrosis in leptin-deficient ob/ob mice: role of tenascin C[J].Int J Obes (Lond),2018,42 (8):1458-1470.
40
WangL, TangX, ZhangH,et al.Elevated leptin expression in rat model of traumatic spinal cord injury and femoral fracture[J].J Spinal Cord Med,2011,34 (5):501-509.
41
YuYW, HsiehTH, ChenKY,et al.Glucose-dependent insulinotropic polypeptide ameliorates mild traumatic brain injury-induced cognitive and sensorimotor deficits and neuroinflammation in rats[J].J Neurotrauma,2016,33 (22):2044-2054.
42
JimiE, FeiH, NakatomiC.NF-κB signaling regulates physiological and pathological chondrogenesis[J].Int J Mol Sci,2019,20 (24):6275.
43
NampoothiriM, ReddyND, JohnJ,et al.Insulin blocks glutamate-induced neurotoxicity in differentiated SH-SY5Y neuronal cells[J].Behav Neurol,2014:674164.
44
Wewer AlbrechtsenNJ, KuhreRE, PedersenJ,et al.The biology of glucagon and the consequences of hyperglucagonemia[J].Biomark Med,2016,10 (11):1141-1151.
45
AhrénB.Glucagon--early breakthroughs and recent discoveries[J].Peptides,2015 (67):74-81.
46
ZhangD, ZhuD, WangF,et al.Therapeutic effect of regulating autophagy in spinal cord injury: a network meta-analysis of direct and indirect comparisons[J].Neural Regen Res,2020,15 (6):1120-1132.
47
DikicI, ElazarZ.Mechanism and medical implications of mammalian autophagy[J].Nat Rev Mol Cell Biol,2018,19 (6):349-364.
48
TsujimotoY, ShimizuS.Another way to die: autophagic programmed cell death[J].Cell Death Differ,2005 (12Suppl 2):1528-1534.
49
KnoferleJ, KochJC, OstendorfT,et al.Mechanisms of acute axonal degeneration in the optic nerve in vivo[J].Proc Natl Acad Sci U S A,2010,107 (13):6064-6069.
50
RaySK.Modulation of autophagy for neuroprotection and functional recovery in traumatic spinal cord injury[J].Neural Regen Res,2020,15 (9):1601-1612.
51
JinY, LinY, FengJF,et al.Moderate hypothermia significantly decreases hippocampal cell death involving autophagy pathway after moderate traumatic brain injury[J].J Neurotrauma,2015,32 (14):1090-1100.
52
SchaferM.Physiology and pathophysiology of pain[J].Ther Umsch,1999,56 (8):426-430.
53
杨晓慧, 张钦, 庾红林, 等. 过氧化物酶体增殖物激活受体γ激动剂对脊髓损伤后大鼠自噬相关蛋白表达的抑制作用[J/CD]. 中华危重症医学杂志(电子版) , 2019, 12 (4) : 223-228
54
LiH, ZhangQ, YangX,et al.PPAR-γ agonist rosiglitazone reduces autophagy and promotes functional recovery in experimental traumaticspinal cord injury[J].Neurosci Lett,2017 (650):89-96.
55
BaiL, MeiX, ShenZ,et al.Netrin-1 improves functional recovery through autophagy regulation by activating the AMPK/mTOR signaling pathway in rats with spinal cord injury[J].Sci Rep,2017 (7):42288.
56
ChoH, LeeJH, UmJ,et al.ENOblock inhibits the pathology of diet-induced obesity[J].Sci Rep,2019,9 (1):493.
No related articles found!
阅读次数
全文


摘要