1 |
Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study[J]. Lancet, 2018, 391 (10131): 1706-1717.
|
2 |
Huang K, Yang T, Xu J, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study[J]. Lancet, 2019, 394 (10196): 407-418.
|
3 |
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394 (10204): 1145-1158.
|
4 |
殷鹏,齐金蕾,刘韫宁,等. 2005 ~ 2017年中国疾病负担研究报告[J].中国循环杂志,2019,34(12):1145-1154.
|
5 |
何小军.肺癌合并慢性阻塞性肺疾病患者化学治疗后肺部感染160例临床特征分析[J/CD].中华危重症医学杂志(电子版),2020,13(4):291-294.
|
6 |
Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today[DB/OL]. Lyon, France: International Agency for Research on Cancer, 2018. (2020-11-14) [2021-01-19].
URL
|
7 |
Tang S, Ehiri J, Long Q. China's biggest, most neglected health challenge: non-communicable diseases[J]. Infect Dis Poverty, 2013, 2 (1): 7.
|
8 |
Tang F, Barbacioru C, Nordman E, et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell[J]. Nat Protoc, 2010, 5 (3): 516-535.
|
9 |
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer[J]. Nature, 2012, 487 (7407): 330-337.
|
10 |
Grillet F, Bayet E, Villeronce O, et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture[J]. Gut, 2017, 66 (10): 1802-1810.
|
11 |
Yang L, Wang WH, Qiu WL, et al. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation[J]. Hepatology, 2017, 66 (5): 1387-1401.
|
12 |
Venteicher AS, Tirosh I, Hebert C, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq[J]. Science, 2017, 355 (6332): eaai8478.
|
13 |
Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq[J]. Science, 2016, 352 (6282): 189-196.
|
14 |
Lorthongpanich C, Cheow LF, Balu S, et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos[J]. Science, 2013, 341 (6150): 1110-1112.
|
15 |
Suzuki A, Matsushima K, Makinoshima H, et al. Single-cell analysis of lung adenocarcinoma cell lines reveals diverse expression patterns of individual cells invoked by a molecular target drug treatment[J]. Genome Biol, 2015, 16 (1): 66.
|
16 |
Kim KT, Lee HW, Lee HO, et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells[J]. Genome Biol, 2015, 16 (1): 127.
|
17 |
Xue JY, Zhao Y, Aronowitz J, et al. Rapid non-uniform adaptation to conformation-specific KRAS (G12C) inhibition[J]. Nature, 2020, 577 (7790): 421-425.
|
18 |
Ma KY, Schonnesen AA, Brock A, et al. Single-cell RNA sequencing of lung adenocarcinoma reveals heterogeneity of immune response-related genes[J]. JCI insight, 2019, 4 (4): e121387.
|
19 |
Brummelman J, Mazza EMC, Alvisi G, et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors[J]. J Exp Med, 2018, 215 (10): 2520-2535.
|
20 |
Zilionis R, Engblom C, Pfirschke C, et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species[J]. Immunity, 2019, 50 (5): 1317-1334.e10.
|
21 |
Goveia J, Rohlenova K, Taverna F, et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates[J]. Cancer Cell, 2020, 37 (1): 21-36.e13.
|
22 |
Guo X, Zhang Y, Zheng L, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing[J]. Nat Med, 2018, 24 (7): 978-985.
|
23 |
Smith JC, Sausville EL, Girish V, et al. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract[J]. Dev Cell, 2020, 53 (5): 514-529.e3.
|
24 |
Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells[J]. EMBO J, 2020, 39 (10): e105114.
|
25 |
Guo J, Wei X, Li Q, et al. Single-cell RNA analysis on ACE2 expression provides insights into SARS-CoV-2 potential entry into the bloodstream and heart injury[J]. J Cell Physiol, 2020, 235 (12): 9884-9894.
|
26 |
Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19[J]. Nat Med, 2020, 26 (6): 842-844.
|
27 |
Chua RL, Lukassen S, Trump S, et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis[J]. Nat Biotechnol, 2020, 38 (8): 970-979.
|
28 |
Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19[J]. Nat Med, 2020, 26 (7): 1070-1076.
|
29 |
Lee JS, Park S, Jeong HW, et al. Immunophenotyping of COVID-19 and influenza highlights the role of type Ⅰ interferons in development of severe COVID-19[J]. Sci Immunol, 2020, 5 (49): eabd1554.
|
30 |
Wen W, Su W, Tang H, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing[J]. Cell Discov, 2020 (6): 31.
|
31 |
Cao Y, Su B, Guo X, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells[J]. Cell, 2020, 182 (1): 73-84.e16.
|
32 |
Habermann AC, Gutierrez AJ, Bui LT, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis[J]. Sci Adv, 2020, 6 (28): eaba1972.
|
33 |
Kobayashi Y, Tata A, Konkimalla A, et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis[J]. Nat Cell Biol, 2020, 22 (8): 934-946.
|
34 |
Xie T, Wang Y, Deng N, et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis[J]. Cell Rep, 2018, 22 (13): 3625-3640.
|
35 |
Valenzi E, Bulik M, Tabib T, et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease[J]. Ann Rheum Dis, 2019, 78 (10): 1379-1387.
|
36 |
Tsukui T, Sun KH, Wetter JB, et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis[J]. Nat Commun, 2020, 11 (1): 1920.
|
37 |
Xu Y, Mizuno T, Sridharan A, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis[J]. JCI insight, 2016, 1 (20): e90558.
|
38 |
Strunz M, Simon LM, Ansari M, et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis[J]. Nat Commun, 2020, 11 (1): 3559.
|
39 |
Morse C, Tabib T, Sembrat J, et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis[J]. Eur Respir J, 2019, 54 (2): 1802441.
|
40 |
Yao Y, Welp T, Liu Q, et al. Multiparameter single cell profiling of airway inflammatory cells[J]. Cytometry B Clin Cytom, 2017, 92 (1): 12-20.
|
41 |
Tibbitt CA, Stark JM, Martens L, et al. Single-cell RNA sequencing of the T helper cell response to house dust mites defines a distinct gene expression signature in airway Th2 cells[J]. Immunity, 2019, 51 (1): 169-184.e5.
|