1 |
Jin Y, Choi AM. Cytoprotection of heme oxygenase-1 / carbon monoxide in lung injury[J]. Proc Am Thorac Soc, 2005, 2 (3): 232-235.
|
2 |
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315 (8): 788-800.
|
3 |
Biehl M, Kashyap R, Ahmed AH, et al. Six-month quality-of-life and functional status of acute respiratory distress syndrome survivors compared to patients at risk: a population-based study[J]. Crit Care, 2015 (19): 356.
|
4 |
Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome[J]. N Engl J Med, 1998, 338 (6): 347-354.
|
5 |
Guérin C, Reignier J, Richard JC, et al. Prone positi-oning in severe acute respiratory distress syndrome[J]. N Engl J Med, 2013, 368 (23): 2159-2168.
|
6 |
Australia and New Zealand Extracorporeal Membrane O-xygenation (ANZ ECMO) Influenza Investigators. Extracorporeal membrane oxygenation for 2009 influenza A (H1N1) acute respiratory distress syndrome[J]. JAMA, 2009, 302 (17): 1888-1895.
|
7 |
Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation[J]. J Immunol, 2015, 194 (3): 855-860.
|
8 |
Magalhaes PAF, Padilha GA, Moraes L, et al. Effects of pressure support ventilation on ventilator-induced lung injury in mild acute respiratory distress syndrome depend on level of positive end-expiratory pressure: a randomised animal study[J]. Eur J Anaesthesiol, 2018, 35 (4): 298-306.
|
9 |
Zhao Y, Xiong RP, Chen X, et al. Hsp90 regulation affects the treatment of glucocorticoid for pancreatitis-induced lung injury[J]. Mol Cell Biochem, 2018, 440 (1-2): 189-197.
|
10 |
Cribbs SK, Matthay MA, Martin GS. Stem cells in sepsis and acute lung injury[J]. Crit Care Med, 2010, 38 (12): 2379-2385.
|
11 |
Liu Y, Yuan X, Munoz N, et al. Commitment to aerobic glycolysis sustains immunosuppression of human mesenchymal stem cells[J]. Stem Cells Transl Med, 2019, 8 (1): 93-106.
|
12 |
Ye C, Li H, Bao M, et al. Alveolar macrophage - derived exosomes modulate severity and outcome of acute lung injury[J]. Aging (Albany NY), 2020, 12 (7): 6120-6128.
|
13 |
Wang C, Zhang C, Liu L, et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury[J]. Mol Ther, 2017, 25 (1): 192-204.
|
14 |
Borges FT, Melo SA, Ozdemir BC, et al. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis[J]. J Am Soc Nephrol, 2013, 24 (3): 385-392.
|
15 |
Andre F, Schartz NE, Movassagh M, et al. Malignant effusions and immunogenic tumour-derived exosomes[J]. Lancet, 2002, 360 (9329): 295-305.
|
16 |
Alexander M, Hu R, Runtsch MC, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin[J]. Nat Commun, 2015 (6): 7321.
|
17 |
Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, et al. Salivary gland epithelial cell exosomes: a source of autoantigenic ribonucleoproteins[J]. Arthritis Rheum, 2005, 52 (5): 1517-1521.
|
18 |
Torregrosa Paredes P, Esser J, Admyre C, et al. Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma[J]. Allergy, 2012, 67 (7): 911-919.
|
19 |
Zhou Q, Li M, Wang X, et al. Immune-related microRNAs are abundant in breast milk exosomes[J]. Int J Biol Sci, 2012, 8 (1): 118-123.
|
20 |
Jean-Pierre C, Perni SC, Bongiovanni AM, et al. Extracellular 70-kd heat shock protein in mid-trimester amniotic fluid and its effect on cytokine production by ex vivo-cultured amniotic fluid cells[J]. Am J Obstet Gynecol, 2006, 194 (3): 694-698.
|
21 |
Yang J, Wei F, Schafer C, et al. Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva[J]. PLoS One, 2014, 9 (11): e110641.
|
22 |
Dear JW, Street JM, Bailey MA. Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intrarenal signalling[J]. Proteomics, 2013, 13 (10-11): 1572-1580.
|
23 |
Letsiou E, Sammani S, Zhang W, et al. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding[J]. Am J Respir Cell Mol Biol, 2015, 52 (2): 193-204.
|
24 |
Lee JW, Fang X, Krasnodembskaya A, et al. Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors[J]. Stem Cells, 2011, 29 (6): 913-919.
|
25 |
Loy H, Kuok DIT, Hui KPY, et al. Therapeutic implications of human umbilical cord mesenchymal stromal cells in attenuating influenza A (H5N1) virus-associated acute lung injury[J]. J Infect Dis, 2019, 219 (2): 186-196.
|
26 |
Cruz FF, Borg ZD, Goodwin M, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates Aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice[J]. Stem Cells Transl Med, 2015, 4 (11): 1302-1316.
|
27 |
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015 (13): 308.
|
28 |
Li ZG, Scott MJ, Brzóska T, et al. Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages[J]. Mil Med Res, 2018, 5 (1): 24.
|
29 |
Cao X, Zhang C, Zhang X, et al. MiR-145 negatively regulates TGFBR2 signaling responsible for sepsis-induced acute lung injury[J]. Biomed Pharmacother, 2019 (111): 852-858.
|
30 |
Yi X, Wei X, Lv H, et al. Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3[J]. Exp Cell Res, 2019, 383 (2): 111454.
|
31 |
Zhang D, Lee H, Wang X, et al. A potential role of microvesicle-containing miR-223 / 142 in lung inflammation[J]. Thorax, 2019, 74 (9): 865-874.
|
32 |
Jiang K, Yang J, Guo S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation[J]. Mol Ther, 2019, 27 (10): 1758-1771.
|
33 |
Quan Y, Wang Z, Gong L, et al. Exosome miR-371b-5p promotes proliferation of lung alveolar progenitor type Ⅱ cells by using PTEN to orchestrate the PI3K / Akt signaling[J]. Stem Cell Res Ther, 2017, 8 (1): 138.
|
34 |
Wu X, Liu Z, Hu L, et al. Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126[J]. Exp Cell Res, 2018, 370 (1): 13-23.
|
35 |
Zhou Y, Li P, Goodwin AJ, et al. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury[J]. Crit Care, 2019, 23 (1): 44.
|
36 |
Zhu YG, Feng XM, Abbott J, et al. Human mesenchymal stem cell microvesicles for treatment of E.coli endotoxin-induced acute lung injury in mice[J]. Stem Cells, 2014, 32 (1): 116-125.
|
37 |
Liu JS, Du J, Cheng X, et al. Exosomal miR-451 fr-om human umbilical cord mesenchymal stem cells attenuates burn-induced acute lung injury[J]. J Chin Med Assoc, 2019, 82 (12): 895-901.
|
38 |
Takahashi J, Yamamoto M, Yasukawa H, et al. Inter-leukin-22 directly activates myocardial STAT3 (signal transducer and activator of transcription-3) signaling pathway and prevents myocardial ischemia reperfusion injury[J]. J Am Heart Assoc, 2020, 9 (8): e014814.
|
39 |
Xiong J, Zhou H, Lu D, et al. Levetiracetam reduces early inflammatory response after experimental intracerebral hemorrhage by regulating the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway[J]. Med Sci Monit, 2020 (26): e922741.
|
40 |
Chen X, Gao Q, Zhou L, et al. MiR-146a alleviates inflammation of acute gouty arthritis rats through TLR4 / MyD88 signal transduction pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23 (21): 9230-9237.
|
41 |
Liu J, Chen T, Lei P, et al. Exosomes released by bone marrow mesenchymal stem cells attenuate lung injury induced by intestinal ischemia reperfusion via the TLR4 / NF-κB pathway[J]. Int J Med Sci, 2019, 16 (9): 1238-1244.
|
42 |
Kojima M, Gimenes-Junior JA, Chan TW, et al. Exos-omes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4[J]. FASEB J, 2018, 32 (1): 97-110.
|
43 |
Zhang C, Guo F, Chang M, et al. Exosome-delivered syndecan-1 rescues acute lung injury via a FAK / p190RhoGAP / RhoA / ROCK / NF-κB signaling axis and glycocalyx enhancement[J]. Exp Cell Res, 2019, 384 (1): 111596.
|
44 |
Okada H, Takemura G, Suzuki K, et al. Three-dimensional ultrastructure of capillary endothelial glycocalyx under normal and experimental endotoxemic conditions[J]. Crit Care, 2017, 21 (1): 261.
|
45 |
Stapleton RD, Suratt BT. Obesity and nutrition in acute respiratory distress syndrome[J]. Clin Chest Med, 2014, 35 (4): 655-671.
|
46 |
Yu Q, Wang D, Wen X, et al. Adipose-derived exosomes protect the pulmonary endothelial barrier in ventilator-induced lung injury by inhibiting the TRPV4 / Ca2+ signaling pathway[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318 (4): L723-L741.
|
47 |
Xu N, Shao Y, Ye K, et al. Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats[J]. Inhal Toxicol, 2019, 31 (2): 52-60.
|