切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (02) : 100 -106. doi: 10.3877/cma.j.issn.1674-6880.2021.02.002

所属专题: 文献

论著

富马酸二甲酯减轻糖尿病大鼠心肌缺血再灌注损伤及其相关机制研究
徐桂萍1,(), 朱倩倩2, 杨振宇2   
  1. 1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院麻醉科
    2. 830054 乌鲁木齐,新疆医科大学研究生院
  • 收稿日期:2020-06-05 出版日期:2021-04-30
  • 通信作者: 徐桂萍
  • 基金资助:
    国家自然科学基金项目(81860345)

Protective effect of dimethyl fumarate on myocardial ischemia/reperfusion injury in diabetic rats and its mechanism

Guiping Xu1,(), Qianqian Zhu2, Zhenyu Yang2   

  1. 1. Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
    2. Postgraduate College of Xinjiang Medical University, Urumqi 830054, China
  • Received:2020-06-05 Published:2021-04-30
  • Corresponding author: Guiping Xu
引用本文:

徐桂萍, 朱倩倩, 杨振宇. 富马酸二甲酯减轻糖尿病大鼠心肌缺血再灌注损伤及其相关机制研究[J]. 中华危重症医学杂志(电子版), 2021, 14(02): 100-106.

Guiping Xu, Qianqian Zhu, Zhenyu Yang. Protective effect of dimethyl fumarate on myocardial ischemia/reperfusion injury in diabetic rats and its mechanism[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2021, 14(02): 100-106.

目的

探讨富马酸二甲酯(DMF)通过调节核因子E2相关因子2(Nrf2)对糖尿病大鼠心肌缺血再灌注(MI/R)损伤的保护作用。

方法

60只Sprague-Dawley大鼠均予高脂饮食喂养4周,禁食12 h后,一次性腹腔注射1%链脲佐菌素柠檬酸缓冲液25 mg/kg制备糖尿病大鼠模型,继续给予高脂饲养4周后制备MI/R损伤模型。将60只糖尿病大鼠分成假手术组(S组)、糖尿病大鼠MI/R组(MI/R组)、DMF + MI/R组(R组)和DMF + ML385 + MI/R组(RE组),每组15只大鼠。R组、RE组大鼠给予DMF 25 mg/kg灌胃,连续7 d,1次/d;S组与MI/R组大鼠给予等容量等渗NaCl溶液灌胃。其中,RE组大鼠于缺血前30 min腹腔注射Nrf2抑制剂(ML385)30 mg/kg。MI/R组、R组和RE组大鼠予结扎左冠状动脉前降支30 min,恢复灌注120 min以制备MI/R模型;S组大鼠只开胸,不结扎冠状动脉。比较4组大鼠心肌梗死面积、心率、左心室收缩压(LVSP)、左心室射血分数(LVEF)、左心室短轴缩短率(LVFS)、乳酸脱氢酶(LDH)、肌酸激酶同工酶MB(CK-MB)、心肌肌钙蛋白I(cTnI)、丙二醛、活性氧自由基(ROS)、超氧化物歧化酶(SOD)水平以及Nrf2、血红素氧合酶1(HO-1)蛋白表达水平。

结果

S组大鼠无心肌梗死,MI/R组、R组和RE组大鼠心肌梗死面积比较,差异有统计学意义[(32.5 ± 2.2)%、(23.2 ± 1.6)%、(29.5 ± 1.7)%,F = 98.364,P < 0.001],且MI/R组和RE组大鼠心肌梗死面积均较R组大鼠显著增加(P均< 0.05)。4组大鼠心率、LVSP、LVEF、LVFS、LDH、CK-MB、cTnI、丙二醛、ROS、SOD水平及Nrf2、HO-1蛋白表达水平比较,差异均有统计学意义(F = 198.124、103.884、86.052、39.256、109.126、164.241、98.673、132.102、108.146、76.535、61.132、120.401,P均< 0.001)。与S组相比,MI/R组、R组及RE组大鼠心率[(404 ± 30)、(264 ± 27)、(331 ± 22)、(270 ± 23)次/min]、LVSP [(127 ± 19)、(73 ± 17)、(98 ± 10)、(80 ± 10)mmHg]、LVEF [(68.1 ± 3.2)%、(39.5 ± 4.5)%、(48.4 ± 1.9)%、(38.6 ± 2.3)%]、LVFS [(32.4 ± 1.2)%、(18.5 ± 0.8)%、(25.6 ± 0.7)%、(20.6 ± 1.1)%]、SOD水平均显著下降,LDH [(0.21 ± 0.04)、(0.54 ± 0.07)、(0.37 ± 0.06)、(0.52 ± 0.08)U/mg]、CK-MB [(1 783 ± 41)、(4 357 ± 523)、(3 068 ± 276)、(4 198 ± 490)ng/L]、cTnI [(406 ± 45)、(1 437 ± 251)、(748 ± 167)、(1 520 ± 190)ng/L]、丙二醛、ROS水平及Nrf2、HO-1蛋白表达水平均显著升高(P均< 0.05);与R组相比,MI/R组和RE组大鼠心率、LVSP、LVEF、LVFS、SOD水平及Nrf2、HO-1蛋白表达水平均明显降低,LDH、CK-MB、cTnI、丙二醛、ROS水平均显著升高(P均< 0.05)。

结论

DMF可通过调节Nrf2减轻MI/R损伤,发挥其心肌保护作用。

Objective

To investigate the protective effect of dimethyl fumarate (DMF) on myocardial ischemia/reperfusion (MI/R) injury in diabetic rats by regulating the nuclear factor E2-related factor 2 (Nrf2).

Methods

Sixty Sprague-Dawley rats were fed with a high-fat diet for 4 weeks. After fasting for 12 h, 1% streptozotocin citrate buffer solution was injected intraperitoneally for 25 mg/kg to prepare a diabetic rat model, and then a MI/R injury model was prepared after high-fat feeding for 4 weeks. These 60 diabetic rats were divided into a sham operation group (S group), a diabetes with MI/R group (MI/R group), a DMF + MI/R group (R group) and a DMF + ML385 + MI/R group (RE group), 15 rats in each group. Rats in the R and RE groups were given DMF (25 mg/kg) by intragastrical administration once a day for 7 d, and rats in the S and MI/R groups were given isosmotic NaCl solution in equal volume. Then rats in the RE group were injected intraperitoneally with the Nrf2 inhibitor ML385 (30 mg/kg) 30 min before ischemia. Rats in the MI/R, R and RE groups were ligated with the left anterior descending coronary artery for 30 min, and then restored perfusion for 120 min to prepare the MI/R model. Rats in the S group only opened the chest without ligating the coronary artery. The levels of myocardial infarction area, heart rate, left ventricular systolic pressure (LVSP), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), lactate dehydrogenase (LDH), creatine kinase isoenzyme-MB (CK-MB), cardiac troponin I (cTnI), malondialdehyde, reactive oxygen species (ROS), superoxide dismutase (SOD) and the protein levels of Nrf2, heme oxygenase-1 (HO-1) were compared among the four groups.

Results

No myocardial infarction occurred in the S group. The myocardial infarction area in the MI/R, R and RE groups showed statistically significant differences [(32.5 ± 2.2)%, (23.2 ± 1.6)%, (29.5 ± 1.7)%; F = 98.364, P < 0.001], and it was significantly higher in the MI/R and RE groups than in the R group (both P < 0.05). There were significant differences in the levels of heart rate, LVSP, LVEF, LVFS, LDH, CK-MB, cTnI, malondialdehyde, ROS, SOD and the protein levels of Nrf2, HO-1 in the four groups (F = 198.124, 103.884, 86.052, 39.256, 109.126, 164.241, 98.673, 132.102, 108.146, 76.535, 61.132, 120.401; all P < 0.001). Further pairwise comparison revealed that compared with the S group, the levels of heart rate [(404 ± 30), (264 ± 27), (331 ± 22), (270 ± 23) beats/min], LVSP [(127 ± 19), (73 ± 17), (98 ± 10), (80 ± 10) mmHg], LVEF [(68.1 ± 3.2)%, (39.5 ± 4.5)%, (48.4 ± 1.9)%, (38.6 ± 2.3)%], LVFS [(32.4 ± 1.2)%, (18.5 ± 0.8)%, (25.6 ± 0.7)%, (20.6 ± 1.1)%] and SOD were decreased significantly, while the levels of LDH [(0.21 ± 0.04), (0.54 ± 0.07), (0.37 ± 0.06), (0.52 ± 0.08) U/mg], CK-MB [(1 783 ± 41), (4 357 ± 523), (3 068 ± 276), (4 198 ± 490) ng/L], cTnI [(406 ± 45), (1 437 ± 251), (748 ± 167), (1 520 ± 190) ng/L], malondialdehyde, ROS and the protein levels of Nrf2, HO-1 were increased significantly in the MI/R, R and RE groups (all P < 0.05). As compared with the R group, the levels of heart rate, LVSP, LVEF, LVFS, SOD and the protein levels of Nrf2, HO-1 were decreased significantly, while the levels of LDH, CK-MB, cTnI, malondialdehyde and ROS were increased significantly in the MI/R and RE groups (all P < 0.05).

Conclusion

DMF can reduce MI/R injury in diabetic rats by regulating Nrf2 and thus exert its myocardial protective effect.

表1 4组大鼠心脏功能及超声心动图结果比较( ± s
表2 4组大鼠LDH、CK-MB、cTnI表达水平比较( ± s
图1 4组大鼠心肌组织丙二醛、ROS含量及SOD活性的比较(n = 10)
图2 4组大鼠心肌组织Nrf2、HO-1蛋白表达水平比较(n = 10)
1
张永国,王海英,王颖,等. Nrf/ARE信号通路在缺血预处理减轻大鼠心肌缺血再灌注损伤中的作用[J].中华麻醉学杂志,2016,36(4):447-451.
2
Bicer M, Senturk T, Yanar M, et al. Effects of off-pump versus on-pump coronary artery bypass grafting: apoptosis, inflammation, and oxidative stress[J]. Heart Surg Forum, 2014, 17 (5): E271-E276.
3
赵萱,徐桂萍,王晓丽,等. 2型糖尿病大鼠心肌缺血再灌注损伤转录因子E2相关因子2/血红素氧合酶1信号通路的表达及白藜芦醇的干预研究[J/CD].中华危重症医学杂志(电子版),2020,13(4):247-252.
4
Li P, Lin N, Guo M, et al. REDD1 knockdown protects H9c2 cells against myocardial ischemia/reperfusion injury through Akt/mTORC1/Nrf2 pathway-ameliorated oxidative stress: an in vitro study[J]. Biochem Biophys Res Commun, 2019, 519 (1): 179-185.
5
Ding YW, Zhao GJ, Li XL, et al. SIRT1 exerts protective effects against paraquat-induced injury in mouse type Ⅱ alveolar epithelial cells by deacetylating NRF2 in vitro[J]. Int J Mol Med, 2016, 37 (4): 1049-1058.
6
Takasu C, Vaziri ND, Li S, et al. Treatment with dimethyl fumarate ameliorates liver ischemia/reperfusion injury[J]. World J Gastroenterol, 2017, 23 (25): 4508-4516.
7
Kume T, Suenaga A, Izumi Y, et al. Protective effect of dimethyl fumarate on an oxidative stress model induced by sodium nitroprusside in mice[J]. Biol Pharm Bull, 2016, 39 (6): 1055-1059.
8
Ragab D, Abdallah DM, El-Abhar HS. The dual reno- and neuro-protective effects of dimethyl fumarate against uremic encephalopathy in a renal ischemia/reperfusion model[J]. Pharmacol Rep, 2020, 72 (4): 969-983.
9
Luo M, Sun Q, Zhao H, et al. The effects of dimethyl fumarate on atherosclerosis in the apolipoprotein E-deficient mouse model with streptozotocin-induced hyperglycemia mediated by the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway[J]. Med Sci Monit, 2019 (25): 7966-7975.
10
Sun J, Yu X, Huangpu H, et al. Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1[J]. Biomed Pharmacother, 2019 (1099): 254-261.
11
Zhao D, Yang J, Yang L. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes[J]. Oxid Med Cell Longev, 2017: 6437467.
12
Ni R, Cao T, Xiong S, et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy[J]. Free Radic Biol Med, 2016 (901): 12-23.
13
Ni R, Zheng D, Xiong S, et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy[J]. Diabetes, 2016, 65 (1): 255-268.
14
Yang P, Zhou Y, Xia Q, et al. Astragaloside Ⅳ regulates the PI3K/Akt/HO-1 signaling pathway and inhibits H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation[J]. Biol Pharm Bull, 2019, 42 (5): 721-727.
15
da Costa RM, Rodrigues D, Pereira CA, et al. Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases[J]. Front Pharmacol, 2019 (10): 382.
16
Samimi F, Baazm M, Eftekhar E, et al. Possible antioxidant mechanism of coenzyme Q10 in diabetes: impact on Sirt1/Nrf2 signaling pathways[J]. Res Pharm Sci, 2019, 14 (6): 524-533.
17
Shen Y, Liu X, Shi J, et al. Involvement of Nrf2 in myocardial ischemia and reperfusion injury[J]. Int J Biol Macromol, 2019 (125): 496-502.
18
Klaassen CD, Reisman SA. Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver[J]. Toxicol Appl Pharmacol, 2010, 244 (1): 57-65.
19
Huisman E, Papadimitropoulou K, Jarrett J, et al. Systematic literature review and network meta-analysis in highly active relapsing-remitting multiple sclerosis and rapidly evolving severe multiple sclerosis[J]. BMJ Open, 2017, 7 (3): e013430.
20
Fu CY, Chen J, Lu XY, et al. Dimethyl fumarate attenuates lipopolysaccharide-induced mitochondrial injury by activating Nrf2 pathway in cardiomyocytes[J]. Life Sci, 2019 (235): 116863.
21
Kuang Y, Zhang Y, Xiao Z, et al. Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes[J]. Mol Med Rep, 2020, 22 (4): 2783-2790.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[8] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[9] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[10] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[11] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[12] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
[15] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
阅读次数
全文


摘要