切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (02) : 100 -106. doi: 10.3877/cma.j.issn.1674-6880.2021.02.002

所属专题: 文献

论著

富马酸二甲酯减轻糖尿病大鼠心肌缺血再灌注损伤及其相关机制研究
徐桂萍1,(), 朱倩倩2, 杨振宇2   
  1. 1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院麻醉科
    2. 830054 乌鲁木齐,新疆医科大学研究生院
  • 收稿日期:2020-06-05 出版日期:2021-04-30
  • 通信作者: 徐桂萍
  • 基金资助:
    国家自然科学基金项目(81860345)

Protective effect of dimethyl fumarate on myocardial ischemia/reperfusion injury in diabetic rats and its mechanism

Guiping Xu1,(), Qianqian Zhu2, Zhenyu Yang2   

  1. 1. Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
    2. Postgraduate College of Xinjiang Medical University, Urumqi 830054, China
  • Received:2020-06-05 Published:2021-04-30
  • Corresponding author: Guiping Xu
引用本文:

徐桂萍, 朱倩倩, 杨振宇. 富马酸二甲酯减轻糖尿病大鼠心肌缺血再灌注损伤及其相关机制研究[J/OL]. 中华危重症医学杂志(电子版), 2021, 14(02): 100-106.

Guiping Xu, Qianqian Zhu, Zhenyu Yang. Protective effect of dimethyl fumarate on myocardial ischemia/reperfusion injury in diabetic rats and its mechanism[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2021, 14(02): 100-106.

目的

探讨富马酸二甲酯(DMF)通过调节核因子E2相关因子2(Nrf2)对糖尿病大鼠心肌缺血再灌注(MI/R)损伤的保护作用。

方法

60只Sprague-Dawley大鼠均予高脂饮食喂养4周,禁食12 h后,一次性腹腔注射1%链脲佐菌素柠檬酸缓冲液25 mg/kg制备糖尿病大鼠模型,继续给予高脂饲养4周后制备MI/R损伤模型。将60只糖尿病大鼠分成假手术组(S组)、糖尿病大鼠MI/R组(MI/R组)、DMF + MI/R组(R组)和DMF + ML385 + MI/R组(RE组),每组15只大鼠。R组、RE组大鼠给予DMF 25 mg/kg灌胃,连续7 d,1次/d;S组与MI/R组大鼠给予等容量等渗NaCl溶液灌胃。其中,RE组大鼠于缺血前30 min腹腔注射Nrf2抑制剂(ML385)30 mg/kg。MI/R组、R组和RE组大鼠予结扎左冠状动脉前降支30 min,恢复灌注120 min以制备MI/R模型;S组大鼠只开胸,不结扎冠状动脉。比较4组大鼠心肌梗死面积、心率、左心室收缩压(LVSP)、左心室射血分数(LVEF)、左心室短轴缩短率(LVFS)、乳酸脱氢酶(LDH)、肌酸激酶同工酶MB(CK-MB)、心肌肌钙蛋白I(cTnI)、丙二醛、活性氧自由基(ROS)、超氧化物歧化酶(SOD)水平以及Nrf2、血红素氧合酶1(HO-1)蛋白表达水平。

结果

S组大鼠无心肌梗死,MI/R组、R组和RE组大鼠心肌梗死面积比较,差异有统计学意义[(32.5 ± 2.2)%、(23.2 ± 1.6)%、(29.5 ± 1.7)%,F = 98.364,P < 0.001],且MI/R组和RE组大鼠心肌梗死面积均较R组大鼠显著增加(P均< 0.05)。4组大鼠心率、LVSP、LVEF、LVFS、LDH、CK-MB、cTnI、丙二醛、ROS、SOD水平及Nrf2、HO-1蛋白表达水平比较,差异均有统计学意义(F = 198.124、103.884、86.052、39.256、109.126、164.241、98.673、132.102、108.146、76.535、61.132、120.401,P均< 0.001)。与S组相比,MI/R组、R组及RE组大鼠心率[(404 ± 30)、(264 ± 27)、(331 ± 22)、(270 ± 23)次/min]、LVSP [(127 ± 19)、(73 ± 17)、(98 ± 10)、(80 ± 10)mmHg]、LVEF [(68.1 ± 3.2)%、(39.5 ± 4.5)%、(48.4 ± 1.9)%、(38.6 ± 2.3)%]、LVFS [(32.4 ± 1.2)%、(18.5 ± 0.8)%、(25.6 ± 0.7)%、(20.6 ± 1.1)%]、SOD水平均显著下降,LDH [(0.21 ± 0.04)、(0.54 ± 0.07)、(0.37 ± 0.06)、(0.52 ± 0.08)U/mg]、CK-MB [(1 783 ± 41)、(4 357 ± 523)、(3 068 ± 276)、(4 198 ± 490)ng/L]、cTnI [(406 ± 45)、(1 437 ± 251)、(748 ± 167)、(1 520 ± 190)ng/L]、丙二醛、ROS水平及Nrf2、HO-1蛋白表达水平均显著升高(P均< 0.05);与R组相比,MI/R组和RE组大鼠心率、LVSP、LVEF、LVFS、SOD水平及Nrf2、HO-1蛋白表达水平均明显降低,LDH、CK-MB、cTnI、丙二醛、ROS水平均显著升高(P均< 0.05)。

结论

DMF可通过调节Nrf2减轻MI/R损伤,发挥其心肌保护作用。

Objective

To investigate the protective effect of dimethyl fumarate (DMF) on myocardial ischemia/reperfusion (MI/R) injury in diabetic rats by regulating the nuclear factor E2-related factor 2 (Nrf2).

Methods

Sixty Sprague-Dawley rats were fed with a high-fat diet for 4 weeks. After fasting for 12 h, 1% streptozotocin citrate buffer solution was injected intraperitoneally for 25 mg/kg to prepare a diabetic rat model, and then a MI/R injury model was prepared after high-fat feeding for 4 weeks. These 60 diabetic rats were divided into a sham operation group (S group), a diabetes with MI/R group (MI/R group), a DMF + MI/R group (R group) and a DMF + ML385 + MI/R group (RE group), 15 rats in each group. Rats in the R and RE groups were given DMF (25 mg/kg) by intragastrical administration once a day for 7 d, and rats in the S and MI/R groups were given isosmotic NaCl solution in equal volume. Then rats in the RE group were injected intraperitoneally with the Nrf2 inhibitor ML385 (30 mg/kg) 30 min before ischemia. Rats in the MI/R, R and RE groups were ligated with the left anterior descending coronary artery for 30 min, and then restored perfusion for 120 min to prepare the MI/R model. Rats in the S group only opened the chest without ligating the coronary artery. The levels of myocardial infarction area, heart rate, left ventricular systolic pressure (LVSP), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), lactate dehydrogenase (LDH), creatine kinase isoenzyme-MB (CK-MB), cardiac troponin I (cTnI), malondialdehyde, reactive oxygen species (ROS), superoxide dismutase (SOD) and the protein levels of Nrf2, heme oxygenase-1 (HO-1) were compared among the four groups.

Results

No myocardial infarction occurred in the S group. The myocardial infarction area in the MI/R, R and RE groups showed statistically significant differences [(32.5 ± 2.2)%, (23.2 ± 1.6)%, (29.5 ± 1.7)%; F = 98.364, P < 0.001], and it was significantly higher in the MI/R and RE groups than in the R group (both P < 0.05). There were significant differences in the levels of heart rate, LVSP, LVEF, LVFS, LDH, CK-MB, cTnI, malondialdehyde, ROS, SOD and the protein levels of Nrf2, HO-1 in the four groups (F = 198.124, 103.884, 86.052, 39.256, 109.126, 164.241, 98.673, 132.102, 108.146, 76.535, 61.132, 120.401; all P < 0.001). Further pairwise comparison revealed that compared with the S group, the levels of heart rate [(404 ± 30), (264 ± 27), (331 ± 22), (270 ± 23) beats/min], LVSP [(127 ± 19), (73 ± 17), (98 ± 10), (80 ± 10) mmHg], LVEF [(68.1 ± 3.2)%, (39.5 ± 4.5)%, (48.4 ± 1.9)%, (38.6 ± 2.3)%], LVFS [(32.4 ± 1.2)%, (18.5 ± 0.8)%, (25.6 ± 0.7)%, (20.6 ± 1.1)%] and SOD were decreased significantly, while the levels of LDH [(0.21 ± 0.04), (0.54 ± 0.07), (0.37 ± 0.06), (0.52 ± 0.08) U/mg], CK-MB [(1 783 ± 41), (4 357 ± 523), (3 068 ± 276), (4 198 ± 490) ng/L], cTnI [(406 ± 45), (1 437 ± 251), (748 ± 167), (1 520 ± 190) ng/L], malondialdehyde, ROS and the protein levels of Nrf2, HO-1 were increased significantly in the MI/R, R and RE groups (all P < 0.05). As compared with the R group, the levels of heart rate, LVSP, LVEF, LVFS, SOD and the protein levels of Nrf2, HO-1 were decreased significantly, while the levels of LDH, CK-MB, cTnI, malondialdehyde and ROS were increased significantly in the MI/R and RE groups (all P < 0.05).

Conclusion

DMF can reduce MI/R injury in diabetic rats by regulating Nrf2 and thus exert its myocardial protective effect.

表1 4组大鼠心脏功能及超声心动图结果比较( ± s
表2 4组大鼠LDH、CK-MB、cTnI表达水平比较( ± s
图1 4组大鼠心肌组织丙二醛、ROS含量及SOD活性的比较(n = 10)
图2 4组大鼠心肌组织Nrf2、HO-1蛋白表达水平比较(n = 10)
1
张永国,王海英,王颖,等. Nrf/ARE信号通路在缺血预处理减轻大鼠心肌缺血再灌注损伤中的作用[J].中华麻醉学杂志,2016,36(4):447-451.
2
Bicer M, Senturk T, Yanar M, et al. Effects of off-pump versus on-pump coronary artery bypass grafting: apoptosis, inflammation, and oxidative stress[J]. Heart Surg Forum, 2014, 17 (5): E271-E276.
3
赵萱,徐桂萍,王晓丽,等. 2型糖尿病大鼠心肌缺血再灌注损伤转录因子E2相关因子2/血红素氧合酶1信号通路的表达及白藜芦醇的干预研究[J/CD].中华危重症医学杂志(电子版),2020,13(4):247-252.
4
Li P, Lin N, Guo M, et al. REDD1 knockdown protects H9c2 cells against myocardial ischemia/reperfusion injury through Akt/mTORC1/Nrf2 pathway-ameliorated oxidative stress: an in vitro study[J]. Biochem Biophys Res Commun, 2019, 519 (1): 179-185.
5
Ding YW, Zhao GJ, Li XL, et al. SIRT1 exerts protective effects against paraquat-induced injury in mouse type Ⅱ alveolar epithelial cells by deacetylating NRF2 in vitro[J]. Int J Mol Med, 2016, 37 (4): 1049-1058.
6
Takasu C, Vaziri ND, Li S, et al. Treatment with dimethyl fumarate ameliorates liver ischemia/reperfusion injury[J]. World J Gastroenterol, 2017, 23 (25): 4508-4516.
7
Kume T, Suenaga A, Izumi Y, et al. Protective effect of dimethyl fumarate on an oxidative stress model induced by sodium nitroprusside in mice[J]. Biol Pharm Bull, 2016, 39 (6): 1055-1059.
8
Ragab D, Abdallah DM, El-Abhar HS. The dual reno- and neuro-protective effects of dimethyl fumarate against uremic encephalopathy in a renal ischemia/reperfusion model[J]. Pharmacol Rep, 2020, 72 (4): 969-983.
9
Luo M, Sun Q, Zhao H, et al. The effects of dimethyl fumarate on atherosclerosis in the apolipoprotein E-deficient mouse model with streptozotocin-induced hyperglycemia mediated by the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway[J]. Med Sci Monit, 2019 (25): 7966-7975.
10
Sun J, Yu X, Huangpu H, et al. Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1[J]. Biomed Pharmacother, 2019 (1099): 254-261.
11
Zhao D, Yang J, Yang L. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes[J]. Oxid Med Cell Longev, 2017: 6437467.
12
Ni R, Cao T, Xiong S, et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy[J]. Free Radic Biol Med, 2016 (901): 12-23.
13
Ni R, Zheng D, Xiong S, et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy[J]. Diabetes, 2016, 65 (1): 255-268.
14
Yang P, Zhou Y, Xia Q, et al. Astragaloside Ⅳ regulates the PI3K/Akt/HO-1 signaling pathway and inhibits H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation[J]. Biol Pharm Bull, 2019, 42 (5): 721-727.
15
da Costa RM, Rodrigues D, Pereira CA, et al. Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases[J]. Front Pharmacol, 2019 (10): 382.
16
Samimi F, Baazm M, Eftekhar E, et al. Possible antioxidant mechanism of coenzyme Q10 in diabetes: impact on Sirt1/Nrf2 signaling pathways[J]. Res Pharm Sci, 2019, 14 (6): 524-533.
17
Shen Y, Liu X, Shi J, et al. Involvement of Nrf2 in myocardial ischemia and reperfusion injury[J]. Int J Biol Macromol, 2019 (125): 496-502.
18
Klaassen CD, Reisman SA. Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver[J]. Toxicol Appl Pharmacol, 2010, 244 (1): 57-65.
19
Huisman E, Papadimitropoulou K, Jarrett J, et al. Systematic literature review and network meta-analysis in highly active relapsing-remitting multiple sclerosis and rapidly evolving severe multiple sclerosis[J]. BMJ Open, 2017, 7 (3): e013430.
20
Fu CY, Chen J, Lu XY, et al. Dimethyl fumarate attenuates lipopolysaccharide-induced mitochondrial injury by activating Nrf2 pathway in cardiomyocytes[J]. Life Sci, 2019 (235): 116863.
21
Kuang Y, Zhang Y, Xiao Z, et al. Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes[J]. Mol Med Rep, 2020, 22 (4): 2783-2790.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[5] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[6] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[7] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[8] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[9] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[10] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[11] 涂晓文. 糖尿病肾脏病的靶点药物研发进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 240-240.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[14] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[15] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?