切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2020, Vol. 13 ›› Issue (06) : 427 -431. doi: 10.3877/cma.j.issn.1674-6880.2020.06.005

所属专题: 文献

论著

短时间高氧对肺泡Ⅱ型上皮细胞线粒体活性氧产生及相关通路的影响
赵彦琴1, 李玉兰2,(), 程晓彤1, 李春兰1, 殷玉江2   
  1. 1. 730000 兰州,兰州大学第一临床医学院
    2. 730000 兰州,兰州大学第一医院麻醉科
  • 收稿日期:2020-10-20 出版日期:2020-12-31
  • 通信作者: 李玉兰
  • 基金资助:
    甘肃省自然科学基金(17JR5RA262)

Effects of short-term hyperoxia on mitochondrial reactive oxygen species and related pathways in alveolar epithelial type Ⅱ cells

Yanqin Zhao1, Yulan Li2,(), Xiaotong Cheng1, Chunlan Li1, Yujiang Yin2   

  1. 1. The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, China
    2. Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou 730000, China
  • Received:2020-10-20 Published:2020-12-31
  • Corresponding author: Yulan Li
引用本文:

赵彦琴, 李玉兰, 程晓彤, 李春兰, 殷玉江. 短时间高氧对肺泡Ⅱ型上皮细胞线粒体活性氧产生及相关通路的影响[J/OL]. 中华危重症医学杂志(电子版), 2020, 13(06): 427-431.

Yanqin Zhao, Yulan Li, Xiaotong Cheng, Chunlan Li, Yujiang Yin. Effects of short-term hyperoxia on mitochondrial reactive oxygen species and related pathways in alveolar epithelial type Ⅱ cells[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2020, 13(06): 427-431.

目的

探讨短时间高氧对肺泡Ⅱ型上皮细胞(AECⅡ)线粒体Ca2+ /烟酰胺腺嘌呤二核苷酸(NAD+)/沉默信息调节因子3(SIRT3)/超氧化物歧化酶2(SOD2)通路及活性氧的影响。

方法

将RLE-6TN细胞株细胞分为对照组、高氧组及线粒体钙通道拮抗剂组(拮抗剂组)。对照组细胞置于常规细胞培养箱中,高氧组细胞置于氧浓度为90%的培养箱中,拮抗剂组细胞加入钌红(2 μmol / L)后置于氧浓度为90%的培养箱中,各组均持续培养4 h。随后,对各组细胞线粒体内Ca2+、活性氧、NAD+、还原型烟酰胺腺嘌呤二核苷酸(NADH)含量进行检测,并计算NAD+ / NADH比值;同时,采用实时荧光定量PCR检测SIRT3和SOD2信使RNA(mRNA)水平。

结果

各组间细胞线粒体内Ca2+、活性氧、NAD+、NADH、NAD+ / NADH比值及SIRT3 mRNA、SOD2 mRNA表达水平的比较,差异均有统计学意义(F = 183.500、135.900、32.140、51.520、128.300、59.970、45.020,P均< 0.001)。且与对照组及拮抗剂组比较,高氧组细胞线粒体内Ca2+[(19.5 ± 0.8)、(17.2 ± 0.7)、(24.3 ± 0.3)nmol / L]、活性氧[(491 ± 9)、(480 ± 5)、(530 ± 6)相对荧光单位]及NADH[(0.85 ± 0.03)、(0.87 ± 0.04)、(1.06 ± 0.06)nmol / 104 cells]含量均明显升高,而NAD+含量[(3.30 ± 0.12)、(3.24 ± 0.14)、(2.58 ± 0.29)nmol / 104 cells]、NAD+ / NADH比值[(3.89 ± 0.15)、(3.71 ± 0.15)、(2.44 ± 0.27)]、SIRT3 mRNA[(1.01 ± 0.11)、(0.96 ± 0.08)、(0.45 ± 0.09)]及SOD2 mRNA[(1.01 ± 0.14)、(1.05 ± 0.11)、(0.48 ± 0.10)]表达水平均显著降低(P均< 0.05)。

结论

短时间高氧可通过AECⅡ线粒体内Ca2+ / NAD+ / SIRT3 / SOD2通路导致活性氧蓄积。

Objective

To explore the effect of short-term hyperoxia on the mitochondrial Ca2+ / nicotinamide adenine dinucleotide (NAD+) / silence information regulator 3 (SIRT3) / superoxide dismutase 2 (SOD2) pathway and reactive oxygen species (ROS) in alveolar epithelial type Ⅱ cells (AECⅡ).

Methods

The RLE-6TN cells were randomly divided into a control group, a hyperoxia group and a mitochondrial calcium channel antagonist group (antagonist group). Cells in the control group were placed in a conventional cell culture box, cells in the hyperoxia group were placed in a box with an oxygen concentration of 90%, and cells in the antagonist group were given ruthenium red (2 μmol / L) and then placed in a box with an oxygen concentration of 90%. The cells in all groups were cultured continuously for 4 h. Subsequently, the mitochondrial Ca2+, ROS, NAD+ and reduced nicotinamide adenine dinucleotide (NADH) contents were measured, and the NAD+ / NADH level was calculated. The messenger RNA (mRNA) levels of SIRT3 and SOD2 were detected by real-time fluorescent quantitative PCR.

Results

The mitochondrial Ca2+, ROS, NAD+, NADH, NAD+ / NADH, SIRT3 mRNA and SOD2 mRNA all showed significant differences among the three groups (F = 183.500, 135.900, 32.140, 51.520, 128.300, 59.970, 45.020; all P < 0.001). Compared with the control group and antagonist group, the contents of mitochondrial Ca2+ [(19.5 ± 0.8), (17.2 ± 0.7), (24.3 ± 0.3) nmol / L], ROS [(491 ± 9), (480 ± 5), (530 ± 6) relative fluorescence units] and NADH [(0.85 ± 0.03), (0.87 ± 0.04), (1.06 ± 0.06) nmol / 104 cells] increased obviously, and the NAD+ content [(3.30 ± 0.12), (3.24 ± 0.14), (2.58 ± 0.29) nmol / 104 cells], NAD+ / NADH [(3.89 ± 0.15), (3.71 ± 0.15), (2.44 ± 0.27)], SIRT3 mRNA [(1.01 ± 0.11), (0.96 ± 0.08), (0.45 ± 0.09)] and SOD2 mRNA [(1.01 ± 0.14), (1.05 ± 0.11), (0.48 ± 0.10)] decreased markedly in the hyperoxia group (all P < 0.05).

Conclusion

Short-term hyperoxia can increase the production of ROS by the Ca2+ / NAD+ / SIRT3 / SOD2 pathway in AECⅡ.

表1 各组RLE-6TN细胞间线粒体内Ca2+和活性氧含量的比较( ± s
表2 各组RLE-6TN细胞间NAD+、NADH含量及NAD+ / NADH比值的比较( ± s
表3 各组RLE-6TN细胞间SIRT3、SOD2 mRNA水平的比较( ± s
1
Fukuhara K, Nakashima T, Abe M, et al. Suplatast tosilate protects the lung against hyperoxic lung injury by scavenging hydroxyl radicals[J]. Free Radic Biol Med, 2017 (106): 1-9.
2
方以群,张懿. 高氧诱导的急性肺损伤研究现状及治疗靶点[J]. 转化医学杂志,2013,2(5):260-265.
3
Asikainen TM, White CW. Pulmonary antioxidant de-fenses in the preterm newborn with respiratory distress and bronchopulmonary dysplasia in evolution: implications for antioxidant therapy[J]. Antioxid Redox Signal, 2004, 6 (1): 155-167.
4
Bai YX, Fang F, Jiang JL, et al. Extrinsic calcitonin gene-related peptide inhibits hyperoxia-induced alveolar epithelial type Ⅱ cells apoptosis, oxidative stress, and reactive oxygen species (ROS) production by enhancing notch 1 and homocysteine-induced endoplasmic reticulum protein (HERP) expression[J]. Med Sci Monit, 2017 (23): 5774-5782.
5
Kim MJ, Ryu JC, Kwon Y, et al. Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice[J]. Antioxid Redox Signal, 2014, 21 (13): 1803-1818.
6
Ren T, Zhang H, Wang J, et al. MCU-dependent mi-tochondrial Ca2+ inhibits NAD+ / SIRT3 / SOD2 pathway to promote ROS production and metastasis of HCC cells[J]. Oncogene, 2017, 36 (42): 5897-5909.
7
Kurundkar D, Kurundkar AR, Bone NB, et al. SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury[J]. JCI Insight, 2019, 4 (1): e120722.
8
王晓霞,李玉兰,沙小兰,等. 去铁胺对大鼠高氧肺损伤的影响[J]. 中华麻醉学杂志,2019,39(8):931-934.
9
Harijith A, Pendyala S, Ebenezer DL, et al. Hypero-xiainduced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P / S1P1&2 signaling axis in lung endothelium[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311 (2): L337-L351.
10
Zou D, Li J, Fan Q, et al. Reactive oxygen and ni-trogen species induce cell apoptosis via a mitochondria-dependent pathway in hyperoxia lung injury[J]. J Cell Biochem, 2019, 120 (4): 4837-4850.
11
汤鲁明,王林霞,孙来芳,等. 萝卜硫素对脓毒症急性肺损伤大鼠氧化损伤及脱嘌呤/脱嘧啶核酸内切酶1表达的影响[J/CD]. 中华危重症医学杂志(电子版),2017,10(4):246-251.
12
Peng TI, Jou MJ. Oxidative stress caused by mitoch-ondrial calcium overload[J]. Ann N Y Acad Sci, 2010 (1201): 183-188.
13
Chakraborty PK, Mustafi SB, Xiong X, et al. MICU1 drives glycolysis and chemoresistance in ovarian cancer[J]. Nat Commun, 2017 (8): 14634.
14
Feissner RF, Skalska J, Gaum WE, et al. Crosstalk signaling between mitochondrial Ca2+ and ROS[J]. Front Biosci (Landmark Ed), 2009 (14): 1197-1218.
15
Chen J, Wang A, Chen Q. SirT3 and p53 deacet-ylation in aging and cancer[J]. J Cell Physiol, 2017, 232 (9): 2308-2311.
16
Salvatori I, Valle C, Ferri A, et al. SIRT3 and mi-tochondrial metabolism in neurodegenerative diseases[J]. Neurochem Int, 2017 (109): 184-192.
17
He X, Zeng H, Chen JX. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease[J]. J Cell Physiol, 2019, 234 (3): 2252-2265.
18
Elustondo PA, Nichols M, Robertson GS, et al. Mito-chondrial Ca2+ uptake pathways[J]. J Bioenerg Biomembr, 2017, 49 (1): 113-119.
19
Yuan Z, Cao A, Liu H, et al. Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes[J]. J Cell Biochem, 2017, 118 (9): 2809-2818.
20
Berthiaume JM, Kurdys JG, Muntean DM, et al. Mito-chondrial NAD+ / NADH redox state and diabetic cardiomyopathy[J]. Antioxid Redox Signal, 2019, 30 (3): 375-398.
21
Jing E, Emanuelli B, Hirschey MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production[J]. Proc Natl Acad Sci U S A, 2011, 108 (35): 14608-14613.
22
Chen Y, Zhang J, Lin Y, et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS[J]. EMBO Rep, 2011, 12 (6): 534-541.
23
Asimakis GK, Lick S, Patterson C. Postischemic recovery of contractile function is impaired in SOD2+ / - but not SOD1+ / - mouse hearts[J]. Circulation, 2002, 105 (8): 981-986.
[1] 王泽华, 郭子瑊, 陈帅, 狄靖凯, 闫泽辉, 冯腾达, 毛兴佳, 向川. 线粒体质量控制在骨关节炎中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 215-224.
[2] 周月惠, 江梦钰, 薛宇轩, 卫杨文祥, 凡一诺, 万子艺, 刘予豪, 陈镇秋, 周驰. 线粒体动力学相关蛋白影响破骨细胞分化机制探讨[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 60-68.
[3] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[4] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[5] 吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.
[6] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[7] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[8] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[9] 李乐, 朱志军. 铁死亡及其在肝脏缺血-再灌注损伤中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 109-113.
[10] 史亚波, 李扬, 黄长文. 缺血-再灌注损伤促进肝癌复发机制的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 96-99.
[11] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[12] 苗楠, 宗子钰. 脑出血后继发性脑损伤与线粒体相关机制的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 107-111.
[13] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[14] 肖韩艳, 王子杰, 王岳, 李岩. 槲皮素通过抑制小鼠骨髓来源泡沫细胞焦亡抗动脉粥样硬化的研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(01): 26-32.
[15] 罗婷, 邱令智, 易东, 鄢华. 线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 60-63.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?