切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2020, Vol. 13 ›› Issue (06) : 427 -431. doi: 10.3877/cma.j.issn.1674-6880.2020.06.005

所属专题: 文献

论著

短时间高氧对肺泡Ⅱ型上皮细胞线粒体活性氧产生及相关通路的影响
赵彦琴1, 李玉兰2,(), 程晓彤1, 李春兰1, 殷玉江2   
  1. 1. 730000 兰州,兰州大学第一临床医学院
    2. 730000 兰州,兰州大学第一医院麻醉科
  • 收稿日期:2020-10-20 出版日期:2020-12-31
  • 通信作者: 李玉兰
  • 基金资助:
    甘肃省自然科学基金(17JR5RA262)

Effects of short-term hyperoxia on mitochondrial reactive oxygen species and related pathways in alveolar epithelial type Ⅱ cells

Yanqin Zhao1, Yulan Li2,(), Xiaotong Cheng1, Chunlan Li1, Yujiang Yin2   

  1. 1. The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, China
    2. Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou 730000, China
  • Received:2020-10-20 Published:2020-12-31
  • Corresponding author: Yulan Li
引用本文:

赵彦琴, 李玉兰, 程晓彤, 李春兰, 殷玉江. 短时间高氧对肺泡Ⅱ型上皮细胞线粒体活性氧产生及相关通路的影响[J]. 中华危重症医学杂志(电子版), 2020, 13(06): 427-431.

Yanqin Zhao, Yulan Li, Xiaotong Cheng, Chunlan Li, Yujiang Yin. Effects of short-term hyperoxia on mitochondrial reactive oxygen species and related pathways in alveolar epithelial type Ⅱ cells[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2020, 13(06): 427-431.

目的

探讨短时间高氧对肺泡Ⅱ型上皮细胞(AECⅡ)线粒体Ca2+ /烟酰胺腺嘌呤二核苷酸(NAD+)/沉默信息调节因子3(SIRT3)/超氧化物歧化酶2(SOD2)通路及活性氧的影响。

方法

将RLE-6TN细胞株细胞分为对照组、高氧组及线粒体钙通道拮抗剂组(拮抗剂组)。对照组细胞置于常规细胞培养箱中,高氧组细胞置于氧浓度为90%的培养箱中,拮抗剂组细胞加入钌红(2 μmol / L)后置于氧浓度为90%的培养箱中,各组均持续培养4 h。随后,对各组细胞线粒体内Ca2+、活性氧、NAD+、还原型烟酰胺腺嘌呤二核苷酸(NADH)含量进行检测,并计算NAD+ / NADH比值;同时,采用实时荧光定量PCR检测SIRT3和SOD2信使RNA(mRNA)水平。

结果

各组间细胞线粒体内Ca2+、活性氧、NAD+、NADH、NAD+ / NADH比值及SIRT3 mRNA、SOD2 mRNA表达水平的比较,差异均有统计学意义(F = 183.500、135.900、32.140、51.520、128.300、59.970、45.020,P均< 0.001)。且与对照组及拮抗剂组比较,高氧组细胞线粒体内Ca2+[(19.5 ± 0.8)、(17.2 ± 0.7)、(24.3 ± 0.3)nmol / L]、活性氧[(491 ± 9)、(480 ± 5)、(530 ± 6)相对荧光单位]及NADH[(0.85 ± 0.03)、(0.87 ± 0.04)、(1.06 ± 0.06)nmol / 104 cells]含量均明显升高,而NAD+含量[(3.30 ± 0.12)、(3.24 ± 0.14)、(2.58 ± 0.29)nmol / 104 cells]、NAD+ / NADH比值[(3.89 ± 0.15)、(3.71 ± 0.15)、(2.44 ± 0.27)]、SIRT3 mRNA[(1.01 ± 0.11)、(0.96 ± 0.08)、(0.45 ± 0.09)]及SOD2 mRNA[(1.01 ± 0.14)、(1.05 ± 0.11)、(0.48 ± 0.10)]表达水平均显著降低(P均< 0.05)。

结论

短时间高氧可通过AECⅡ线粒体内Ca2+ / NAD+ / SIRT3 / SOD2通路导致活性氧蓄积。

Objective

To explore the effect of short-term hyperoxia on the mitochondrial Ca2+ / nicotinamide adenine dinucleotide (NAD+) / silence information regulator 3 (SIRT3) / superoxide dismutase 2 (SOD2) pathway and reactive oxygen species (ROS) in alveolar epithelial type Ⅱ cells (AECⅡ).

Methods

The RLE-6TN cells were randomly divided into a control group, a hyperoxia group and a mitochondrial calcium channel antagonist group (antagonist group). Cells in the control group were placed in a conventional cell culture box, cells in the hyperoxia group were placed in a box with an oxygen concentration of 90%, and cells in the antagonist group were given ruthenium red (2 μmol / L) and then placed in a box with an oxygen concentration of 90%. The cells in all groups were cultured continuously for 4 h. Subsequently, the mitochondrial Ca2+, ROS, NAD+ and reduced nicotinamide adenine dinucleotide (NADH) contents were measured, and the NAD+ / NADH level was calculated. The messenger RNA (mRNA) levels of SIRT3 and SOD2 were detected by real-time fluorescent quantitative PCR.

Results

The mitochondrial Ca2+, ROS, NAD+, NADH, NAD+ / NADH, SIRT3 mRNA and SOD2 mRNA all showed significant differences among the three groups (F = 183.500, 135.900, 32.140, 51.520, 128.300, 59.970, 45.020; all P < 0.001). Compared with the control group and antagonist group, the contents of mitochondrial Ca2+ [(19.5 ± 0.8), (17.2 ± 0.7), (24.3 ± 0.3) nmol / L], ROS [(491 ± 9), (480 ± 5), (530 ± 6) relative fluorescence units] and NADH [(0.85 ± 0.03), (0.87 ± 0.04), (1.06 ± 0.06) nmol / 104 cells] increased obviously, and the NAD+ content [(3.30 ± 0.12), (3.24 ± 0.14), (2.58 ± 0.29) nmol / 104 cells], NAD+ / NADH [(3.89 ± 0.15), (3.71 ± 0.15), (2.44 ± 0.27)], SIRT3 mRNA [(1.01 ± 0.11), (0.96 ± 0.08), (0.45 ± 0.09)] and SOD2 mRNA [(1.01 ± 0.14), (1.05 ± 0.11), (0.48 ± 0.10)] decreased markedly in the hyperoxia group (all P < 0.05).

Conclusion

Short-term hyperoxia can increase the production of ROS by the Ca2+ / NAD+ / SIRT3 / SOD2 pathway in AECⅡ.

表1 各组RLE-6TN细胞间线粒体内Ca2+和活性氧含量的比较( ± s
表2 各组RLE-6TN细胞间NAD+、NADH含量及NAD+ / NADH比值的比较( ± s
表3 各组RLE-6TN细胞间SIRT3、SOD2 mRNA水平的比较( ± s
1
Fukuhara K, Nakashima T, Abe M, et al. Suplatast tosilate protects the lung against hyperoxic lung injury by scavenging hydroxyl radicals[J]. Free Radic Biol Med, 2017 (106): 1-9.
2
方以群,张懿. 高氧诱导的急性肺损伤研究现状及治疗靶点[J]. 转化医学杂志,2013,2(5):260-265.
3
Asikainen TM, White CW. Pulmonary antioxidant de-fenses in the preterm newborn with respiratory distress and bronchopulmonary dysplasia in evolution: implications for antioxidant therapy[J]. Antioxid Redox Signal, 2004, 6 (1): 155-167.
4
Bai YX, Fang F, Jiang JL, et al. Extrinsic calcitonin gene-related peptide inhibits hyperoxia-induced alveolar epithelial type Ⅱ cells apoptosis, oxidative stress, and reactive oxygen species (ROS) production by enhancing notch 1 and homocysteine-induced endoplasmic reticulum protein (HERP) expression[J]. Med Sci Monit, 2017 (23): 5774-5782.
5
Kim MJ, Ryu JC, Kwon Y, et al. Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice[J]. Antioxid Redox Signal, 2014, 21 (13): 1803-1818.
6
Ren T, Zhang H, Wang J, et al. MCU-dependent mi-tochondrial Ca2+ inhibits NAD+ / SIRT3 / SOD2 pathway to promote ROS production and metastasis of HCC cells[J]. Oncogene, 2017, 36 (42): 5897-5909.
7
Kurundkar D, Kurundkar AR, Bone NB, et al. SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury[J]. JCI Insight, 2019, 4 (1): e120722.
8
王晓霞,李玉兰,沙小兰,等. 去铁胺对大鼠高氧肺损伤的影响[J]. 中华麻醉学杂志,2019,39(8):931-934.
9
Harijith A, Pendyala S, Ebenezer DL, et al. Hypero-xiainduced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P / S1P1&2 signaling axis in lung endothelium[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311 (2): L337-L351.
10
Zou D, Li J, Fan Q, et al. Reactive oxygen and ni-trogen species induce cell apoptosis via a mitochondria-dependent pathway in hyperoxia lung injury[J]. J Cell Biochem, 2019, 120 (4): 4837-4850.
11
汤鲁明,王林霞,孙来芳,等. 萝卜硫素对脓毒症急性肺损伤大鼠氧化损伤及脱嘌呤/脱嘧啶核酸内切酶1表达的影响[J/CD]. 中华危重症医学杂志(电子版),2017,10(4):246-251.
12
Peng TI, Jou MJ. Oxidative stress caused by mitoch-ondrial calcium overload[J]. Ann N Y Acad Sci, 2010 (1201): 183-188.
13
Chakraborty PK, Mustafi SB, Xiong X, et al. MICU1 drives glycolysis and chemoresistance in ovarian cancer[J]. Nat Commun, 2017 (8): 14634.
14
Feissner RF, Skalska J, Gaum WE, et al. Crosstalk signaling between mitochondrial Ca2+ and ROS[J]. Front Biosci (Landmark Ed), 2009 (14): 1197-1218.
15
Chen J, Wang A, Chen Q. SirT3 and p53 deacet-ylation in aging and cancer[J]. J Cell Physiol, 2017, 232 (9): 2308-2311.
16
Salvatori I, Valle C, Ferri A, et al. SIRT3 and mi-tochondrial metabolism in neurodegenerative diseases[J]. Neurochem Int, 2017 (109): 184-192.
17
He X, Zeng H, Chen JX. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease[J]. J Cell Physiol, 2019, 234 (3): 2252-2265.
18
Elustondo PA, Nichols M, Robertson GS, et al. Mito-chondrial Ca2+ uptake pathways[J]. J Bioenerg Biomembr, 2017, 49 (1): 113-119.
19
Yuan Z, Cao A, Liu H, et al. Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes[J]. J Cell Biochem, 2017, 118 (9): 2809-2818.
20
Berthiaume JM, Kurdys JG, Muntean DM, et al. Mito-chondrial NAD+ / NADH redox state and diabetic cardiomyopathy[J]. Antioxid Redox Signal, 2019, 30 (3): 375-398.
21
Jing E, Emanuelli B, Hirschey MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production[J]. Proc Natl Acad Sci U S A, 2011, 108 (35): 14608-14613.
22
Chen Y, Zhang J, Lin Y, et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS[J]. EMBO Rep, 2011, 12 (6): 534-541.
23
Asimakis GK, Lick S, Patterson C. Postischemic recovery of contractile function is impaired in SOD2+ / - but not SOD1+ / - mouse hearts[J]. Circulation, 2002, 105 (8): 981-986.
[1] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[2] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[3] 黄珞, 梁爱琳, 龚启梅. 线粒体动力学在牙源性间充质干细胞中的研究现状[J]. 中华口腔医学研究杂志(电子版), 2022, 16(06): 352-357.
[4] 李晖, 范志勇, 耿西林, 常虎林, 吴武军, 张煜. 肝癌中线粒体膜蛋白ATAD3A表达与临床病理特征及预后的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 157-161.
[5] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[6] 王瑶, 王震, 钱叶本. 基于线粒体自噬相关基因构建肝细胞癌患者预后风险模型[J]. 中华肝脏外科手术学电子杂志, 2022, 11(04): 380-385.
[7] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[8] 李燕辰, 李建宁, 涂晓文, 李峰生. 核辐射导致急性肾损伤中铁死亡的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 338-341.
[9] 阳莹, 崔亚梅, 邵强, 赵宁, 陶文强, 陈家泉, 徐泽尧, 钱克俭, 刘芬. 线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制[J]. 中华重症医学电子杂志, 2023, 09(01): 69-77.
[10] 隆昱洲, 柳华, 张云茜, 李兴统, 范云虎, 尚正良, 宋镇妤, 罗丽华. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 65-74.
[11] 杨怡, 胡馗, 胡汝均, 江智霞. 高氧血症与机械通气治疗导致呼吸机相关性肺炎的相关性研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(06): 597-600.
[12] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
[13] 于乾雪, 廖学梅, 孙龙龙, 范梦莹, 蒋明超, 孟慧, 李瑞基. 线粒体功能障碍与卵巢早衰的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 283-288.
[14] 于露, 李永华. 线粒体相关内质网膜的生物学功能及其在相关疾病中作用的研究进展[J]. 中华诊断学电子杂志, 2022, 10(04): 284-288.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要