切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2020, Vol. 13 ›› Issue (06) : 412 -418. doi: 10.3877/cma.j.issn.1674-6880.2020.06.003

所属专题: 文献

论著

蛋白激酶Cβ抑制剂LY333531对糖尿病大鼠造影剂肾病的保护作用
蔡学英1, 殷婷2, 朱英1, 刘炳炜1, 胡炜1,()   
  1. 1. 310006 杭州,浙江大学医学院附属杭州市第一人民医院重症医学科
    2. 210029 南京,南京医科大学第一附属医院(江苏省人民医院)心内科
  • 收稿日期:2020-10-21 出版日期:2020-12-31
  • 通信作者: 胡炜
  • 基金资助:
    浙江省医药卫生一般研究项目(2015KYA178)

Protective effect of protein kinase Cβ inhibitor LY333531 in diabetic rats with contrast-induced nephropathy

Xueying Cai1, Ting Yin2, Ying Zhu1, Bingwei Liu1, Wei Hu1,()   

  1. 1. Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
    2. Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
  • Received:2020-10-21 Published:2020-12-31
  • Corresponding author: Wei Hu
引用本文:

蔡学英, 殷婷, 朱英, 刘炳炜, 胡炜. 蛋白激酶Cβ抑制剂LY333531对糖尿病大鼠造影剂肾病的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2020, 13(06): 412-418.

Xueying Cai, Ting Yin, Ying Zhu, Bingwei Liu, Wei Hu. Protective effect of protein kinase Cβ inhibitor LY333531 in diabetic rats with contrast-induced nephropathy[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2020, 13(06): 412-418.

目的

探讨蛋白激酶Cβ(PKCβ)抑制剂LY333531对造影剂诱导的糖尿病大鼠急性肾损伤的保护作用及其机制。

方法

将40只大鼠分为健康对照组(C组)、糖尿病组(D组)、糖尿病造影剂组(DC组)以及糖尿病+ Y333531 +造影剂组(DCL组),每组各10只。对D组、DC组及DCL组大鼠腹腔注射2%链脲佐菌素(60 mg / kg)建立糖尿病模型;对DCL组大鼠给予LY333531灌胃预处理(10 mg·kg-1·d-1),持续14 d;对DC组与DCL组大鼠进行尾静脉注射76%复方泛影葡胺(10 ml / kg),建立造影剂肾病模型。苏木素-伊红(HE)染色观察各组大鼠肾组织病理变化;检测各组大鼠血糖、血肌酐、尿微量白蛋白(mAlb)和N-乙酰-β-D-葡萄糖苷酶(NAG)水平;采用实时荧光定量PCR法检测转化生长因子β1(TGFβ1)、Smad3、Smad7、Bax、Caspase3和Bcl2的信使RNA(mRNA)表达水平;采用Western-blotting检测TGFβ1、Bax、Caspase3、Bcl2蛋白及磷酸化PKCβ(pPKCβ) / PKCβ、磷酸化p38(p-p38) / p38的比值。

结果

HE结果显示,C组大鼠肾小球、肾小管结构正常;D组大鼠肾组织内肾小球及肾小管结构形态较为完整,间质周围极少量炎症细胞;DC组肾小管上皮细胞脱落、周围炎症细胞浸润明显;DCL组大鼠肾小管上皮细胞脱落程度明显降低,肾小管及肾小球周围间质少量炎症细胞浸润。各组大鼠间血糖、血肌酐、尿mAlb、尿NAG水平、TGFβ1蛋白及其mRNA、Smad3 mRNA、Smad7 mRNA、Bax蛋白及其mRNA、Caspase3蛋白及其mRNA、Bcl2蛋白及其mRNA表达水平、pPKCβ / PKCβ和p-p38 / p38比值间比较,差异均有统计学意义(F = 67.976,P < 0.001;F = 27.155,P < 0.001;F = 41.201,P < 0.001;F = 59.635,P < 0.001;F = 21.073,P < 0.001;F = 28.365,P < 0.001;F = 15.215,P < 0.001;F = 36.273,P < 0.001;F = 14.489,P < 0.001;F = 23.172,P < 0.001;F = 17.103,P < 0.001;F = 29.916,P < 0.001;F = 12.026,P < 0.001;F = 13.368,P < 0.001;F = 6.126,P = 0.002;F = 6.434,P = 0.002)。进一步两两比较发现,D组、DC组以及DCL组大鼠的血糖水平较C组大鼠均明显升高(P均< 0.05);与DC组大鼠比较,DCL组大鼠的的血肌酐、尿mAlb、尿NAG水平、TGFβ1蛋白及其mRNA、Smad3 mRNA、Bax蛋白及其mRNA、Caspase3蛋白及其mRNA、pPKCβ / PKCβ和p-p38 / p38比值均显著降低,而Smad7 mRNA、Bcl2蛋白及其mRNA表达水平均显著升高(P均< 0.05)。

结论

PKCβ抑制剂LY333531能通过抑制PKCβ-TGFβ-p38-Caspase3通路改善造影剂诱导的糖尿病大鼠急性肾损伤。

Objective

To explore the protective effect of protein kinase Cβ (PKCβ) inhibitor LY333531 in diabetic rats with contrast-induced acute kidney injury and its mechanism.

Methods

Totally 40 rats were randomly divided into a control group (C group), a diabetic group (D group), a diabetes with contrast-induced nephropathy group (DC group) and a diabetes with Y333531 and contrast-induced nephropathy group (DCL group), 10 rats in each group. The rats in the D, DC and DCL groups were injected intraperitoneally with 2% streptozotocin (60 mg / kg) to induce a diabetes model. Then the rats in the DCL group were pretreated with LY333531 (10 mg·kg-1·d-1) by intragastric administration for 14 d; the rats in the DC and DCL groups were injected with 76% diatrizoate (10 mL / kg) by tail vein to establish a model of contrast-induced nephropathy. The pathological changes in kidney were observed by hematoxylin-eosin (HE) staining. The levels of blood glucose, serum creatinine, urine microalbumin (mAlb) and urine N-acetyl-β-D-glucosidase (NAG) were detected. The messenger RNA (mRNA) levels of transforming growth factor beta1 (TGFβ1), Smad3, Smad7, Bax, Caspase3 and Bcl2 were examined by real-time fluorescence quantitative PCR. The protein levels of TGFβ1, Bax, Caspase3 and Bcl2 were detected by Western-blotting, as well as the phospho-PKCβ (pPKCβ) / PKCβ and phospho-p38 (p-p38) / p38.

Results

According to HE, the glomeruli and renal tubules in the group C were structurally normal; the glomeruli and renal tubules in the group D were relatively structurally complete with few inflammatory cells around the interstitium; the epithelial cells of renal tubules in the DC group were exfoliated and the inflammatory cells obviously infiltrated around renal tubules; in the DCL group, the degree of epithelial cell shedding in renal tubules was significantly reduced, and a small amount of inflammatory cells infiltrated in the interstitium around renal tubules and glomeruli. The blood glucose, serum creatinine, urine mAlb, urine NAG, TGFβ1 protein and its mRNA, Smad3 mRNA, Smad7 mRNA, Bax protein and its mRNA, Caspase3 protein and its mRNA, Bcl2 protein and its mRNA, pPKCβ / PKCβ and p-p38 / p38 all showed significant differences among the four groups (F = 67.976, P < 0.001; F = 27.155, P < 0.001; F = 41.201, P < 0.001; F = 59.635, P < 0.001; F = 21.073, P < 0.001; F = 28.365, P < 0.001; F = 15.215, P < 0.001; F = 36.273, P < 0.001; F = 14.489, P < 0.001; F = 23.172, P < 0.001; F = 17.103, P < 0.001; F = 29.916, P < 0.001; F = 12.026, P < 0.001; F = 13.368, P < 0.001; F = 6.126, P = 0.002; F = 6.434, P = 0.002). Further pairwise comparison revealed that the levels of blood glucose in the D, DC and DCL groups were significantly higher than those in the C group (all P < 0.05). As compared with the DC group, the serum creatinine, urine mAlb, urine NAG, TGFβ1 protein and its mRNA, Smad3 mRNA, Bax protein and its mRNA, Caspase3 protein and its mRNA, pPKCβ / PKCβ and p-p38 / p38 decreased markedly, while the Smad7 mRNA, Bcl2 protein and its mRNA increased obviously in the DCL group (all P < 0.05).

Conclusion

The PKCβ inhibitor LY333531 can improve contrast-induced acute kidney injury in diabetic rats by inhibiting the PKCβ-TGFβ-p38-Caspase3 pathway.

图1 各组小鼠肾脏组织病理变化(HE染色 × 20)
图2 各组大鼠血糖、血肌酐、尿mAlb以及尿NAG水平的比较
图3 各组大鼠间TGFβ1蛋白及其mRNA、Smad3 mRNA及Smad7 mRNA表达水平的比较
图4 各组大鼠凋亡相关蛋白及基因表达水平的比较
图5 各组大鼠间pPKCβ / PKCβ和p-p38 / p38比值的比较
1
Hossain MA, Costanzo E, Cosentino J, et al. Contrast-induced nephropathy: pathophysiology, risk factors, and prevention[J]. Saudi J Kidney Dis Transpl, 2018, 29(1): 1-9.
2
Vlachopanos G, Schizas D, Hasemaki N, et al. Patho-physiology of contrast-induced acute kidney injury (CIAKI)[J]. Curr Pharm Des, 2019, 25 (44): 4642-4647.
3
Romano G, Briguori C, Quintavalle C, et al. Contrast agents and renal cell apoptosis[J]. Eur Heart J, 2008, 29 (20): 2569-2576.
4
Naziroglu M, Yoldas N, Uzgur EN, et al. Role of co-ntrast media on oxidative stress, Ca2+ signaling and apoptosis in kidney[J]. J Membr Biol, 2013, 246 (2): 91-100.
5
Pinton P, Rimessi A, Marchi S, et al. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc[J]. Science, 2007, 315 (5812): 659-663.
6
Noh H, King GL. The role of protein kinase C acti-vation in diabetic nephropathy[J]. Kidney Int Suppl, 2007 (106): S49-S53.
7
Sifuentes-Franco S, Padilla-Tejeda DE, Carrillo-Ibarra S, et al. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy[J]. Int J Endocrinol, 2018: 1875870.
8
Kayan M, Naziroglu M, Ovey IS, et al. Non-ionic co-ntrast media induces oxidative stress and apoptosis through Ca2+ influx in human neutrophils[J]. J Membr Biol, 2012, 245 (12): 833-840.
9
任克,王永芳. 碘对比剂诱导急性肾损伤研究进展[J]. 中国医学影像技术,2020,36(7):1084-1087.
10
Quintavalle C, Brenca M, De Micco F, et al. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis[J]. Cell Death Dis, 2011, 2 (5): e155.
11
Lee HC, Chang JG, Yen HW, et al. Ionic contrast media induced more apoptosis in diabetic kidney than nonionic contrast media[J]. J Nephrol, 2011, 24 (3):376-380.
12
Wong VY, Keller PM, Nuttall ME, et al. Role of caspases in human renal proximal tubular epithelial cell apoptosis[J]. Eur J Pharmacol, 2001, 433 (2-3): 135-140.
13
Shalini S, Dorstyn L, Dawar S, et al. Old, new and emerging functions of caspases[J]. Cell Death Differ, 2015, 22 (4): 526-539.
14
Edlich F. BCL-2 proteins and apoptosis: recent in-sights and unknowns[J]. Biochem Biophys Res Commun, 2018, 500 (1): 26-34.
15
Pena-Blanco A, García-Sáez AJ. Bax, Bak and be-yond-mitochondrial performance in apoptosis[J]. FEBS J, 2018, 285 (3): 416-431.
16
Yano T, Itoh Y, Sendo T, et al. Cyclic AMP reverses radiocontrast media-induced apoptosis in LLC-PK1 cells by activating A kinase / PI3 kinase[J]. Kidney Int, 2003, 64 (6): 2052-2063.
17
Lee HC, Sheu SH, Yen HW, et al. JNK / ATF2 pathway is involved in iodinated contrast media-induced apoptosis[J]. Am J Nephrol, 2010, 31 (2): 125-133.
18
Kolyada AY, Liangos O, Madias NE, et al. Protective effect of erythropoietin against radiocontrast-induced renal tubular epithelial cell injury[J]. Am J Nephrol, 2008, 28 (2): 203-209.
19
Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update[J]. Arch Toxicol, 2015, 89(6): 867-882.
20
Kilari S, Yang B, Sharma A, et al. Increased trans-forming growth factor beta (TGF-β) and pSMAD3 signaling in a murine model for contrast induced kidney injury[J]. Sci Rep, 2018, 8 (1): 6630.
21
Lee D, Kim CE, Park SY, et al. Protective effect of Artemisia argyi and its flavonoid constituents against contrast-induced cytotoxicity by iodixanol in LLC-PK1 cells[J]. Int J Mol Sci, 2018, 19 (5): 1387.
22
Zhao K, Gao Q, Zong C, et al. Cordyceps sinensis prevents contrast-induced nephropathy in diabetic rats: its underlying mechanism[J]. Int J Clin Exp Pathol, 2018, 11 (12): 5571-5580.
23
吴逢选,张京臣,姜久昆,等. 转化生长因子β1 / Smads通路在百草枯中毒所致上皮-间充质转变和肺纤维化中的作用研究[J/CD]. 中华危重症医学杂志(电子版),2018,11(1):3-10.
24
Meng XM, Tang PM, Li J, et al. TGF-β / Smad sign-aling in renal fibrosis[J]. Front Physiol, 2015 (6): 82.
25
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β / Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018 (292): 76-83.
26
Ma TT, Meng XM. TGF-β / Smad and renal fibrosis [J]. Adv Exp Med Biol, 2019 (1165): 347-364.
27
Yang J, Zhang J. Influence of protein kinase C (PKC) on the prognosis of diabetic nephropathy patients[J]. Int J Clin Exp Pathol, 2015, 8 (11): 14925-14931.
28
Mima A, Ohshiro Y, Kitada M, et al. Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity[J]. Kidney Int, 2011, 79 (8): 883-896.
29
Qiu YY, Tang LQ, Wei W. Berberine exerts reno-protective effects by regulating the AGEs-RAGE signaling pathway in mesangial cells during diabetic nephropathy[J]. Mol Cell Endocrinol, 2017 (443): 89-105.
30
Jiang W, Li Z, Zhao W, et al. Breviscapine atten-uatted contrast medium-induced nephropathy via PKC / Akt / MAPK signalling in diabetic mice[J]. Am J Transl Res, 2016, 8 (2): 329-341.
31
Wu D, Peng F, Zhang B, et al. PKC-beta1 mediates glucose-induced Akt activation and TGF-beta1 upregulation in mesangial cells[J]. J Am Soc Nephrol, 2009, 20 (3): 554-566.
[1] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[2] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[3] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[4] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[5] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[6] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[7] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[8] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[9] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[10] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[11] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[14] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[15] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?