切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2020, Vol. 13 ›› Issue (04) : 241 -246. doi: 10.3877/cma.j.issn.1674-6880.2020.04.001

所属专题: 总编推荐 文献

论著

远端肢体缺血后处理通过线粒体自噬减轻大鼠局灶型脑缺血再灌注损伤的研究
周密1,(), 张琼1, 王强1, 覃兆军1, 舒爱华1   
  1. 1. 443000 湖北宜昌,三峡大学人民医院 宜昌市第一人民医院麻醉科
  • 收稿日期:2020-02-21 出版日期:2020-08-01
  • 通信作者: 周密
  • 基金资助:
    湖北省自然科学基金项目(2016CFC763)

Study of remote limb ischemic postconditioning in mitigation of focal cerebral ischemia-reperfusion injury in rats via mitochondrial autophagy

Mi Zhou1,(), Qiong Zhang1, Qiang Wang1, Zhaojun Qin1, Aihua Shu1   

  1. 1. Department of Anesthesiology, the People's Hospital of China Three Gorges University, the First Hospital of Yichang, Yichang 443000, China
  • Received:2020-02-21 Published:2020-08-01
  • Corresponding author: Mi Zhou
  • About author:
    Corresponding author: Zhou Mi, Email:
引用本文:

周密, 张琼, 王强, 覃兆军, 舒爱华. 远端肢体缺血后处理通过线粒体自噬减轻大鼠局灶型脑缺血再灌注损伤的研究[J]. 中华危重症医学杂志(电子版), 2020, 13(04): 241-246.

Mi Zhou, Qiong Zhang, Qiang Wang, Zhaojun Qin, Aihua Shu. Study of remote limb ischemic postconditioning in mitigation of focal cerebral ischemia-reperfusion injury in rats via mitochondrial autophagy[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2020, 13(04): 241-246.

目的

探讨远端肢体缺血后处理通过线粒体自噬减轻大鼠局灶型脑缺血再灌注损伤的作用。

方法

将105只成年雄性Sprague-Dawley大鼠分为假手术组、缺血再灌注组(A组)、缺血再灌注+远端缺血后处理组(B组)、缺血再灌注+远端缺血后处理+等渗NaCl溶液组(C组)和缺血再灌注+远端缺血后处理+线粒体分裂抑制剂(Mdivi-1)组(D组),每组各21只大鼠。假手术组仅暴露和游离右侧颈动脉,A、B、C、D组采用大脑中动脉阻断法制备大鼠局灶性脑缺血再灌注损伤模型。B、C、D组大鼠于再灌注开始夹闭双侧股动脉实行3个循环的10 min缺血/10 min再灌注,C、D组大鼠在缺血前5 min分别腹腔注射等容量的等渗NaCl溶液和3 mg/kg的Mdivi-1。比较各组大鼠神经功能缺陷量表(NDS)评分、脑梗塞体积百分比、脑缺血半暗区细胞凋亡率、微管相关蛋白1轻链3(LC3)-Ⅱ/Ⅰ比值、超氧化物歧化酶(SOD)、丙二醛及15-F2t-Isoprostane的表达水平。

结果

假手术组大鼠未发生神经功能缺损和脑梗塞。A、B、C、D组大鼠NDS评分[(2.8±0.6)、(1.6±0.4)、(1.6±0.5)、(2.5±0.5)分]和脑梗塞体积百分比[(48±3)%、(28±4)%、(28±4)%、(41±3)%]比较,差异均有统计学意义(F = 39.237、53.278,P均< 0.001),且B、C组大鼠NDS评分和脑梗塞体积百分比均较A、D组显著降低(P均< 0.05)。假手术组、A组、B组、C组及D组大鼠脑缺血半暗区细胞凋亡率[(2.3±0.8)%、(54.6±5.2)%、(29.3±3.1)%、(29.8±3.3)%、(51.2±4.5)%]、LC3-Ⅱ/Ⅰ比值[(0.13±0.03)、(0.32±0.05)、(0.53±0.06)、(0.48±0.08)、(0.35±0.06)]、SOD [(168±19)、(92±13)、(162±21)、(165±23)、(94±15)U/mg]、丙二醛[(4.22±0.28)、(8.41±0.42)、(5.14±0.27)、(5.26±0.31)、(7.93±0.44)nmol/mg]及15-F2t-Isoprostane [(179±86)、(389±105)、(208±89)、(215±85)、(364±103)mg/g]的表达水平比较,差异均有统计学意义(F = 54.658、32.358、59.677、46.195、193.962,P均< 0.001)。进一步两两比较发现,A、B、C、D组大鼠脑缺血半暗区细胞凋亡率、LC3-Ⅱ/Ⅰ比值、丙二醛及15-F2t-Isoprostane表达水平均较假手术组显著升高,A、D组大鼠SOD表达水平均较假手术组显著降低(P均< 0.05);与A、D组比较,B、C组大鼠LC3-Ⅱ/Ⅰ比值和SOD表达水平均显著升高,脑缺血半暗区细胞凋亡率、丙二醛及15-F2t-Isoprostane表达水平均显著降低(P均< 0.05)。

结论

远端肢体缺血后处理可能通过增加线粒体自噬水平抑制氧化应激反应,从而减轻大鼠局灶性脑缺血再灌注损伤。

Objective

To investigate the role of remote limb ischemic postconditioning in mitigation of focal cerebral ischemia-reperfusion injury in rats via mitochondrial autophagy.

Methods

Totally 105 adult male Sprague-Dawley rats were divided into a sham operation group, a ischemia-reperfusion group (A group), a ischemia-reperfusion + remote ischemic postconditioning group (B group), a ischemia-reperfusion + remote ischemic postconditioning + isotonic NaCl solution group (C group) and a ischemia-reperfusion + remote ischemic postconditioning + mitochondrial division inhibitor-1 (Mdivi-1) group (D group), 21 rats in each group. The right carotid artery was exposed and freed in the sham operation group, while a model of focal cerebral ischemia-reperfusion injury was prepared by middle cerebral artery blockade in the A, B, C and D groups. Then 10 min of ischemia/10 min of reperfusion were performed for three cycles in the B, C and D groups, and an equal volume of isotonic NaCl solution and 3 mg/kg of Mdivi-1 were injected intraperitoneally in the C and D groups 5 min before ischemia respectively. The neurological deficit score (NDS), percentage of cerebral infarction volume, and apoptosis rate, microtubule-associated protein 1 light chain 3 (LC3)-Ⅱ/Ⅰ ratio, superoxide dismutase (SOD), malondialdehyde and 15-F2t-Isoprostane of cerebral ischemic semidark cells were compared.

Results

No neurological deficit and cerebral infarction occurred in the sham operation group. The NDS [(2.8 ± 0.6), (1.6 ± 0.4), (1.6 ± 0.5), (2.5 ± 0.5) scores] and percentage of cerebral infarction volume [(48 ± 3)%, (28 ± 4)%, (28 ± 4)%, (41 ± 3)%] were statistically significantly different in the A, B, C and D groups (F = 39.237, 53.278; both P < 0.001). Moreover, they were significantly lower in the B and C groups than in the A and D groups (all P < 0.05). The apoptosis rate [(2.3 ± 0.8)%, (54.6 ± 5.2)%, (29.3 ± 3.1)%, (29.8 ± 3.3)%, (51.2 ± 4.5)%], LC3-Ⅱ/Ⅰ ratio [(0.13 ± 0.03), (0.32 ± 0.05), (0.53 ± 0.06), (0.48 ± 0.08), (0.35 ± 0.06)], SOD [(168 ± 19), (92 ± 13), (162 ± 21), (165 ± 23), (94 ± 15) U/mg], malondialdehyde [(4.22 ± 0.28), (8.41 ± 0.42), (5.14 ± 0.27), (5.26 ± 0.31), (7.93 ± 0.44) nmol/mg] and 15-F2t-Isoprostane [(179 ± 86), (389 ± 105), (208 ± 89), (215 ± 85), (364 ± 103) mg/g] of cerebral ischemic semidark cells were statistically significantly different in the sham operation, A, B, C and D groups (F = 54.658, 32.358, 59.677, 46.195, 193.962; all P < 0.001). Further pairwise comparison showed that the apoptosis rate, LC3-Ⅱ/Ⅰ ratio, malondialdehyde and 15-F2t-Isoprostane in the A, B, C and D groups were significantly higher than those in the sham operation group, while the SOD expression level in the A and D groups was significantly lower than that in the sham operation group (all P < 0.05). Compared with the A and D groups, the LC3-Ⅱ/Ⅰ ratio and SOD expression level of rats in the B and C groups significantly increased, and the apoptosis rate, malondialdehyde and 15-F2t-Isoprostane significantly decreased (all P < 0.05).

Conclusion

Remote limb ischemia postconditioning may reduce focal cerebral ischemia-reperfusion injury in rats by increasing the mitochondrial autophagy level and inhibiting the oxidative stress response.

表1 5组大鼠脑缺血半暗区LC3-Ⅱ/Ⅰ比值、SOD、丙二醛及15-F2t-Isoprostane表达水平比较( ± s
1
Guo H, Zhao L, Wang B, et al. Remote limb ischemic postconditioning protects against cerebral ischemia-reperfusion injury by activating AMPK-dependent autophagy[J]. Brain Res Bull, 2018 (139): 105-113.
2
Li J, Hu XS, Zhou FF, et al. Limb remote ischemic postconditioning protects integrity of the blood-brain barrier after stroke[J]. Neural Regen Res, 2018, 13 (9): 1585-1593.
3
Fimia GM, Kroemer G, Piacentini M. Molecular mechanisms of selective autophagy[J]. Cell Death Differ, 2013, 20 (1): 1-2.
4
Martens S, Behrends C. Molecular mechanisms of selective autophagy[J]. J Mol Biol, 2020, 432 (1): 1-2.
5
Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20 (1): 84-91.
6
Swanson RA, Morton M, Tsao-Wu G, et al. A semi-automated method for measuring brain infarct volume[J]. J Cereb Blood Flow Metab, 1990, 10 (2): 290-293.
7
Ashwal S, Tone B, Tian HR, et al. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion[J]. Stroke, 1998, 29 (5): 1037-1046.
8
Qi ZF, Luo YM, Liu XR, et al. AKT/GSK3β-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model[J]. CNS Neurosci Ther, 2012, 18 (12): 965-973.
9
Davis SM, Pennypacker KR. Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke[J]. Neurochem Int, 2017 (107): 23-32.
10
Bereczki D Jr, Balla J, Bereczki D. Heme oxygenase-1: clinical relevance in ischemic stroke[J]. Curr Pharm Des, 2018, 24 (20), 2229-2235.
11
方红丽,宋秋英,叶小军.血清氧化低密度脂蛋白和S100B蛋白早期变化对于急性脑梗塞和短暂性脑缺血发作的鉴别价值[J/CD].中华危重症医学杂志(电子版),2019,12(2):109-111.
12
Scheibye-Knudsen M, Fang EF, Croteau DL, et al. Protecting the mitochondrial powerhouse[J]. Trends Cell Biol, 2015, 25 (3): 158-170.
13
Thummasorn S, Shinlapawittayatorn K, Khamseekaew J, et al. Humanin directly protects cardiac mitochondria against dysfunction initiated by oxidative stress by decreasing complex I activity[J]. Mitochondrion, 2018 (38): 31-40.
14
Svagusa T, Martinic M, Martinic M, et al. Mitochondrial unfolded protein response, mitophagy and other mitochondrial quality control mechanisms in heart disease and aged heart[J]. Croat Med J, 2020, 61 (2): 126-138.
15
Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond[J]. Free Radic Biol Med, 2016 (100): 210-222.
16
Um JH, Yun J. Emerging role of mitophagy in human disease and physiology[J]. BMB Rep, 2017, 50 (6): 299-307.
17
Kang C, Badr MA, Kyrychenko V, et al. Deficit in PINK1-PARKIN mediated mitochondrial autophagy at late stages of dystrophic cardiomyopathy[J]. Cardiovasc Res, 2018, 114 (1): 90-102.
18
Runwal G, Stamatakou E, Siddiqi FH, et al. LC3-positive structures are prominent in autophagy-deficient cells[J]. Sci Rep, 2019, 9 (1): 10147.
19
Manczak M, Kandimalla R, Yin XL, et al. Mitochondrial division inhibitor 1 reduces dynamin-related Protein 1 and mitochondrial fission activity[J]. Hum Mol Genet, 2019, 28 (2): 177-199.
20
Zhang X, Yan H, Yuan Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance[J]. Autophagy, 2013, 9 (9): 1321-1333.
21
Li Q, Zhang T, Wang J, et al. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke[J]. Biochem Biophys Res Commun, 2014, 444 (2): 182-188.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[3] 王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华. 超声造影在脑胶质瘤切除术术中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 755-760.
[4] 袁泽, 庄丽. 超声检测胎儿脐动脉和大脑中动脉血流对胎儿宫内窘迫的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 618-621.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[7] 江文诗, 何湘湘. 全球及我国器官捐献发展特征分析与学科建设[J]. 中华移植杂志(电子版), 2023, 17(05): 280-286.
[8] 李晓东, 魏云. 冠状切口额下入路治疗前颅窝巨大脑膜瘤[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 318-319.
[9] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[10] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[11] 廖家权, 吴波, 唐昌敏. 体外冲击波联合肌电生物反馈对脑卒中后足下垂的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 286-292.
[12] 孙钢. 超高场磁共振成像的发展现状与展望[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 369-372.
[13] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
[14] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[15] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
阅读次数
全文


摘要