切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2020, Vol. 13 ›› Issue (04) : 241 -246. doi: 10.3877/cma.j.issn.1674-6880.2020.04.001

所属专题: 总编推荐 文献

论著

远端肢体缺血后处理通过线粒体自噬减轻大鼠局灶型脑缺血再灌注损伤的研究
周密1,(), 张琼1, 王强1, 覃兆军1, 舒爱华1   
  1. 1. 443000 湖北宜昌,三峡大学人民医院 宜昌市第一人民医院麻醉科
  • 收稿日期:2020-02-21 出版日期:2020-08-01
  • 通信作者: 周密
  • 基金资助:
    湖北省自然科学基金项目(2016CFC763)

Study of remote limb ischemic postconditioning in mitigation of focal cerebral ischemia-reperfusion injury in rats via mitochondrial autophagy

Mi Zhou1,(), Qiong Zhang1, Qiang Wang1, Zhaojun Qin1, Aihua Shu1   

  1. 1. Department of Anesthesiology, the People's Hospital of China Three Gorges University, the First Hospital of Yichang, Yichang 443000, China
  • Received:2020-02-21 Published:2020-08-01
  • Corresponding author: Mi Zhou
  • About author:
    Corresponding author: Zhou Mi, Email:
引用本文:

周密, 张琼, 王强, 覃兆军, 舒爱华. 远端肢体缺血后处理通过线粒体自噬减轻大鼠局灶型脑缺血再灌注损伤的研究[J/OL]. 中华危重症医学杂志(电子版), 2020, 13(04): 241-246.

Mi Zhou, Qiong Zhang, Qiang Wang, Zhaojun Qin, Aihua Shu. Study of remote limb ischemic postconditioning in mitigation of focal cerebral ischemia-reperfusion injury in rats via mitochondrial autophagy[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2020, 13(04): 241-246.

目的

探讨远端肢体缺血后处理通过线粒体自噬减轻大鼠局灶型脑缺血再灌注损伤的作用。

方法

将105只成年雄性Sprague-Dawley大鼠分为假手术组、缺血再灌注组(A组)、缺血再灌注+远端缺血后处理组(B组)、缺血再灌注+远端缺血后处理+等渗NaCl溶液组(C组)和缺血再灌注+远端缺血后处理+线粒体分裂抑制剂(Mdivi-1)组(D组),每组各21只大鼠。假手术组仅暴露和游离右侧颈动脉,A、B、C、D组采用大脑中动脉阻断法制备大鼠局灶性脑缺血再灌注损伤模型。B、C、D组大鼠于再灌注开始夹闭双侧股动脉实行3个循环的10 min缺血/10 min再灌注,C、D组大鼠在缺血前5 min分别腹腔注射等容量的等渗NaCl溶液和3 mg/kg的Mdivi-1。比较各组大鼠神经功能缺陷量表(NDS)评分、脑梗塞体积百分比、脑缺血半暗区细胞凋亡率、微管相关蛋白1轻链3(LC3)-Ⅱ/Ⅰ比值、超氧化物歧化酶(SOD)、丙二醛及15-F2t-Isoprostane的表达水平。

结果

假手术组大鼠未发生神经功能缺损和脑梗塞。A、B、C、D组大鼠NDS评分[(2.8±0.6)、(1.6±0.4)、(1.6±0.5)、(2.5±0.5)分]和脑梗塞体积百分比[(48±3)%、(28±4)%、(28±4)%、(41±3)%]比较,差异均有统计学意义(F = 39.237、53.278,P均< 0.001),且B、C组大鼠NDS评分和脑梗塞体积百分比均较A、D组显著降低(P均< 0.05)。假手术组、A组、B组、C组及D组大鼠脑缺血半暗区细胞凋亡率[(2.3±0.8)%、(54.6±5.2)%、(29.3±3.1)%、(29.8±3.3)%、(51.2±4.5)%]、LC3-Ⅱ/Ⅰ比值[(0.13±0.03)、(0.32±0.05)、(0.53±0.06)、(0.48±0.08)、(0.35±0.06)]、SOD [(168±19)、(92±13)、(162±21)、(165±23)、(94±15)U/mg]、丙二醛[(4.22±0.28)、(8.41±0.42)、(5.14±0.27)、(5.26±0.31)、(7.93±0.44)nmol/mg]及15-F2t-Isoprostane [(179±86)、(389±105)、(208±89)、(215±85)、(364±103)mg/g]的表达水平比较,差异均有统计学意义(F = 54.658、32.358、59.677、46.195、193.962,P均< 0.001)。进一步两两比较发现,A、B、C、D组大鼠脑缺血半暗区细胞凋亡率、LC3-Ⅱ/Ⅰ比值、丙二醛及15-F2t-Isoprostane表达水平均较假手术组显著升高,A、D组大鼠SOD表达水平均较假手术组显著降低(P均< 0.05);与A、D组比较,B、C组大鼠LC3-Ⅱ/Ⅰ比值和SOD表达水平均显著升高,脑缺血半暗区细胞凋亡率、丙二醛及15-F2t-Isoprostane表达水平均显著降低(P均< 0.05)。

结论

远端肢体缺血后处理可能通过增加线粒体自噬水平抑制氧化应激反应,从而减轻大鼠局灶性脑缺血再灌注损伤。

Objective

To investigate the role of remote limb ischemic postconditioning in mitigation of focal cerebral ischemia-reperfusion injury in rats via mitochondrial autophagy.

Methods

Totally 105 adult male Sprague-Dawley rats were divided into a sham operation group, a ischemia-reperfusion group (A group), a ischemia-reperfusion + remote ischemic postconditioning group (B group), a ischemia-reperfusion + remote ischemic postconditioning + isotonic NaCl solution group (C group) and a ischemia-reperfusion + remote ischemic postconditioning + mitochondrial division inhibitor-1 (Mdivi-1) group (D group), 21 rats in each group. The right carotid artery was exposed and freed in the sham operation group, while a model of focal cerebral ischemia-reperfusion injury was prepared by middle cerebral artery blockade in the A, B, C and D groups. Then 10 min of ischemia/10 min of reperfusion were performed for three cycles in the B, C and D groups, and an equal volume of isotonic NaCl solution and 3 mg/kg of Mdivi-1 were injected intraperitoneally in the C and D groups 5 min before ischemia respectively. The neurological deficit score (NDS), percentage of cerebral infarction volume, and apoptosis rate, microtubule-associated protein 1 light chain 3 (LC3)-Ⅱ/Ⅰ ratio, superoxide dismutase (SOD), malondialdehyde and 15-F2t-Isoprostane of cerebral ischemic semidark cells were compared.

Results

No neurological deficit and cerebral infarction occurred in the sham operation group. The NDS [(2.8 ± 0.6), (1.6 ± 0.4), (1.6 ± 0.5), (2.5 ± 0.5) scores] and percentage of cerebral infarction volume [(48 ± 3)%, (28 ± 4)%, (28 ± 4)%, (41 ± 3)%] were statistically significantly different in the A, B, C and D groups (F = 39.237, 53.278; both P < 0.001). Moreover, they were significantly lower in the B and C groups than in the A and D groups (all P < 0.05). The apoptosis rate [(2.3 ± 0.8)%, (54.6 ± 5.2)%, (29.3 ± 3.1)%, (29.8 ± 3.3)%, (51.2 ± 4.5)%], LC3-Ⅱ/Ⅰ ratio [(0.13 ± 0.03), (0.32 ± 0.05), (0.53 ± 0.06), (0.48 ± 0.08), (0.35 ± 0.06)], SOD [(168 ± 19), (92 ± 13), (162 ± 21), (165 ± 23), (94 ± 15) U/mg], malondialdehyde [(4.22 ± 0.28), (8.41 ± 0.42), (5.14 ± 0.27), (5.26 ± 0.31), (7.93 ± 0.44) nmol/mg] and 15-F2t-Isoprostane [(179 ± 86), (389 ± 105), (208 ± 89), (215 ± 85), (364 ± 103) mg/g] of cerebral ischemic semidark cells were statistically significantly different in the sham operation, A, B, C and D groups (F = 54.658, 32.358, 59.677, 46.195, 193.962; all P < 0.001). Further pairwise comparison showed that the apoptosis rate, LC3-Ⅱ/Ⅰ ratio, malondialdehyde and 15-F2t-Isoprostane in the A, B, C and D groups were significantly higher than those in the sham operation group, while the SOD expression level in the A and D groups was significantly lower than that in the sham operation group (all P < 0.05). Compared with the A and D groups, the LC3-Ⅱ/Ⅰ ratio and SOD expression level of rats in the B and C groups significantly increased, and the apoptosis rate, malondialdehyde and 15-F2t-Isoprostane significantly decreased (all P < 0.05).

Conclusion

Remote limb ischemia postconditioning may reduce focal cerebral ischemia-reperfusion injury in rats by increasing the mitochondrial autophagy level and inhibiting the oxidative stress response.

表1 5组大鼠脑缺血半暗区LC3-Ⅱ/Ⅰ比值、SOD、丙二醛及15-F2t-Isoprostane表达水平比较( ± s
1
Guo H, Zhao L, Wang B, et al. Remote limb ischemic postconditioning protects against cerebral ischemia-reperfusion injury by activating AMPK-dependent autophagy[J]. Brain Res Bull, 2018 (139): 105-113.
2
Li J, Hu XS, Zhou FF, et al. Limb remote ischemic postconditioning protects integrity of the blood-brain barrier after stroke[J]. Neural Regen Res, 2018, 13 (9): 1585-1593.
3
Fimia GM, Kroemer G, Piacentini M. Molecular mechanisms of selective autophagy[J]. Cell Death Differ, 2013, 20 (1): 1-2.
4
Martens S, Behrends C. Molecular mechanisms of selective autophagy[J]. J Mol Biol, 2020, 432 (1): 1-2.
5
Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20 (1): 84-91.
6
Swanson RA, Morton M, Tsao-Wu G, et al. A semi-automated method for measuring brain infarct volume[J]. J Cereb Blood Flow Metab, 1990, 10 (2): 290-293.
7
Ashwal S, Tone B, Tian HR, et al. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion[J]. Stroke, 1998, 29 (5): 1037-1046.
8
Qi ZF, Luo YM, Liu XR, et al. AKT/GSK3β-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model[J]. CNS Neurosci Ther, 2012, 18 (12): 965-973.
9
Davis SM, Pennypacker KR. Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke[J]. Neurochem Int, 2017 (107): 23-32.
10
Bereczki D Jr, Balla J, Bereczki D. Heme oxygenase-1: clinical relevance in ischemic stroke[J]. Curr Pharm Des, 2018, 24 (20), 2229-2235.
11
方红丽,宋秋英,叶小军.血清氧化低密度脂蛋白和S100B蛋白早期变化对于急性脑梗塞和短暂性脑缺血发作的鉴别价值[J/CD].中华危重症医学杂志(电子版),2019,12(2):109-111.
12
Scheibye-Knudsen M, Fang EF, Croteau DL, et al. Protecting the mitochondrial powerhouse[J]. Trends Cell Biol, 2015, 25 (3): 158-170.
13
Thummasorn S, Shinlapawittayatorn K, Khamseekaew J, et al. Humanin directly protects cardiac mitochondria against dysfunction initiated by oxidative stress by decreasing complex I activity[J]. Mitochondrion, 2018 (38): 31-40.
14
Svagusa T, Martinic M, Martinic M, et al. Mitochondrial unfolded protein response, mitophagy and other mitochondrial quality control mechanisms in heart disease and aged heart[J]. Croat Med J, 2020, 61 (2): 126-138.
15
Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond[J]. Free Radic Biol Med, 2016 (100): 210-222.
16
Um JH, Yun J. Emerging role of mitophagy in human disease and physiology[J]. BMB Rep, 2017, 50 (6): 299-307.
17
Kang C, Badr MA, Kyrychenko V, et al. Deficit in PINK1-PARKIN mediated mitochondrial autophagy at late stages of dystrophic cardiomyopathy[J]. Cardiovasc Res, 2018, 114 (1): 90-102.
18
Runwal G, Stamatakou E, Siddiqi FH, et al. LC3-positive structures are prominent in autophagy-deficient cells[J]. Sci Rep, 2019, 9 (1): 10147.
19
Manczak M, Kandimalla R, Yin XL, et al. Mitochondrial division inhibitor 1 reduces dynamin-related Protein 1 and mitochondrial fission activity[J]. Hum Mol Genet, 2019, 28 (2): 177-199.
20
Zhang X, Yan H, Yuan Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance[J]. Autophagy, 2013, 9 (9): 1321-1333.
21
Li Q, Zhang T, Wang J, et al. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke[J]. Biochem Biophys Res Commun, 2014, 444 (2): 182-188.
[1] 张春玉, 陈海云, 肖忠萍, 罗琴, 潘运昌. 血清NT-proBNP 预测肺栓塞心脏功能障碍的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 805-808.
[2] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[3] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[4] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[5] 江西省神经外科质量控制中心. 江西省心源性脑卒中多学科协作防治专家共识[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 264-277.
[6] 张洪, 杨琪, 罗静, 唐茜, 邓鸿, 巩文艳, 王丽坤, 刘静, 艾双春. 多靶点神经调控技术对卒中后上肢运动功能障碍患者的脑网络功能连接研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 278-284.
[7] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
[8] 许方军, 曹晓光, 王修敏, 王婷, 陈冬冬, 余程冬, 张鹤言. 基于闭环理论的动作观察疗法联合躯干控制训练对脑卒中后下肢运动的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 292-299.
[9] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[10] 张雅文, 尹昱, 陈江龙, 杨玉慧, 吕红香, 张琦, 吕佩源. Theta爆发式经颅磁刺激治疗失语症的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 306-311.
[11] 陈冬冬, 余程冬, 曹晓光. 上肢外骨骼机器人在脑卒中康复中的应用与研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 312-317.
[12] 李晓东, 王汉宇, 马龙, 刘亮, 魏云, 李昂. 小脑后下动脉瘤的显微手术治疗[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 318-320.
[13] 赵小民, 杨军, 田巍巍. 枳术颗粒联合利那洛肽治疗便秘型肠易激综合征的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 465-469.
[14] 惠泉, 孙方昱, 赵欣, 许青, 李奕, 陈建雄, 吴立, 郑伟燕. 急性间歇性卟啉病HMBS基因新发缺失突变一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 507-511.
[15] 李璇, 邓岚, 郭微, 邓永梅, 刘杰昕. 标准化皮肤管理流程在防治脑卒中患者失禁相关性皮炎中的应用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 479-482.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?