1 |
Sawhney S, Fraser SD. Epidemiology of AKI: utilizing large databases to determine the burden of AKI[J]. Adv Chronic Kidney Dis, 2017, 24 (4): 194-204.
|
2 |
Schetz M, Schneider A. Focus on acute kidney injury[J]. Intensive Care Med, 2017, 43 (9): 1421-1423.
|
3 |
吴灵萍,张萍,蒋华,等. ICU急性肾损伤患者连续肾脏替代疗法临床分析[J/CD].中华危重症医学杂志(电子版),2017,10(5):322-327.
|
4 |
Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes[J]. Kidney Int, 2012, 81 (9): 819-825.
|
5 |
Ostermann M, Liu K. Pathophysiology of AKI[J]. Best Pract Res Clin Anaesthesiol, 2017, 31 (3): 305-314.
|
6 |
Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches[J]. Physiol Rev, 2016, 96 (4): 1297-1325.
|
7 |
Ren GL, Zhu J, Li J, et al. Noncoding RNAs in acute kidney injury[J]. J Cell Physiol, 2019, 234 (3): 2266-2276.
|
8 |
Bali KK, Kuner R. Noncoding RNAs: key molecules in understanding and treating pain[J]. Trends Mol Med, 2014, 20 (8): 437-448.
|
9 |
Zhou Y, Zhang L, Ji H, et al. MiR-17~92 ablation impairs liver regeneration in an estrogen-dependent manner[J]. J Cell Mol Med, 2016, 20 (5): 939-948.
|
10 |
Martinez-Sanchez A, Nguyen-Tu MS, Rutter GA. DIC-ER inactivation identifies pancreatic beta-cell "disallowed" genes targeted by microRNAs[J]. Mol Endocrinol, 2015, 29 (7): 1067-1079.
|
11 |
Borsani G, Tonlorenzi R, Simmler MC, et al. Charac-terization of a murine gene expressed from the inactive X chromosome[J]. Nature, 1991, 351 (6324): 325-329.
|
12 |
Ingolia NT, Lareau LF, Weissman JS. Ribosome pro-filing of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes[J]. Cell, 2011, 147 (4): 789-802.
|
13 |
Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms[J]. RNA Biol, 2010, 7 (5): 582-585.
|
14 |
Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs[J]. Nucleic Acids Res, 2012, 40 (14): 6391-6400.
|
15 |
Meng X, Chen Q, Zhang P, et al. CircPro: an inte-grated tool for the identification of circRNAs with protein-coding potential[J]. Bioinformatics, 2017, 33 (20): 3314-3316.
|
16 |
Xu T, Wu J, Han P, et al. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data[J]. BMC Genomics, 2017, 18 (Suppl 6): 680.
|
17 |
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation[J]. Nat Struct Mol Biol, 2013, 20 (3): 300-307.
|
18 |
Zhou Q, Huang XR, Yu J, et al. Long noncoding RNA Arid2-IR is a novel therapeutic target for renal inflammation[J]. Mol Ther, 2015, 23 (6): 1034-1043.
|
19 |
Zhou Q, Huang XR, Yu J, et al. Identification of novel long noncoding RNAs associated with TGF-beta/Smad3-mediated renal inflammation and fibrosis by RNA sequencing[J]. Am J Pathol, 2014, 184 (2): 409-417.
|
20 |
Chung AC, Huang XR, Zhou L, et al. Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice[J]. Nephrol Dial Transplant, 2009, 24 (5): 1443-1454.
|
21 |
Chen Y, Qiu J, Chen B, et al. Long non-coding RNA NEAT1 plays an important role in sepsis-induced acute kidney injury by targeting miR-204 and modulating the NF-kappaB pathway[J]. Int Immunopharmacol, 2018 (59): 252-260.
|
22 |
Huang W, Lan X, Li X, et al. Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFalpha and JNK/NF-kappaB pathways in HK-2 cells[J]. Int Immunopharmacol, 2017 (47): 134-140.
|
23 |
Li X, Zeng L, Cao C, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy[J]. Exp Cell Res, 2017, 350 (2): 327-335.
|
24 |
Ding Y, Guo F, Zhu T, et al. Mechanism of long n-on-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-kappaB signaling pathway[J]. Int J Mol Med, 2018, 41 (1): 446-454.
|
25 |
Yu TM, Palanisamy K, Sun KT, et al. RANTES me-diates kidney ischemia reperfusion injury through a possible role of HIF-1alpha and LncRNA PRINS[J]. Sci Rep, 2016 (6): 18424.
|
26 |
Lin J, Zhang X, Xue C, et al. The long noncoding RNA landscape in hypoxic and inflammatory renal epithelial injury[J]. Am J Physiol Renal Physiol, 2015, 309 (11): F901-F913.
|
27 |
Liu X, Li D, Zhang W, et al. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay[J]. EMBO J, 2012, 31 (23): 4415-4427.
|
28 |
Xu Y, Tong Y, Zhu J, et al. An increase in long n-on-coding RNA PANDAR is associated with poor prognosis in clear cell renal cell carcinoma[J]. BMC Cancer, 2017, 17 (1): 373.
|
29 |
Zhang A, Zhou N, Huang J, et al. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage[J]. Cell Res, 2013, 23 (3): 340-350.
|
30 |
Liu Q, Huang J, Zhou N, et al. LncRNA loc285194 is a p53-regulated tumor suppressor[J]. Nucleic Acids Res, 2013, 41 (9): 4976-4987.
|
31 |
Tang C, Ma Z, Zhu J, et al. P53 in kidney injury and repair: mechanism and therapeutic potentials[J]. Pharmacol Ther, 2019 (195): 5-12.
|
32 |
Tano K, Mizuno R, Okada T, et al. MALAT-1 enh-ances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes[J]. FEBS Lett, 2010, 584 (22): 4575-4580.
|
33 |
Michalik KM, You X, Manavski Y, et al. Long non-coding RNA MALAT1 regulates endothelial cell function and vessel growth[J]. Circ Res, 2014, 114 (9): 1389-1397.
|
34 |
Lorenzen JM, Schauerte C, Kielstein JT, et al. Circ-ulating long noncoding RNATapSaki is a predictor of mortality in critically ill patients with acute kidney injury[J]. Clin Chem, 2015, 61 (1): 191-201.
|
35 |
Lorenzen JM, Schauerte C, Kolling M, et al. Long noncoding RNAs in urine are detectable and may enable early detection of acute T cell-mediated rejection of renal allografts[J]. Clin Chem, 2015, 61 (12): 1505-1514.
|
36 |
Huang YS, Hsieh HY, Shih HM, et al. Urinary Xist is a potential biomarker for membranous nephropathy[J]. Biochem Biophys Res Commun, 2014, 452 (3): 415-421.
|
37 |
Li YF, Jing Y, Hao J, et al. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Protein Cell, 2013, 4 (11): 813-819.
|
38 |
Lorenzen JM, Kaucsar T, Schauerte C, et al. MicroR-NA-24 antagonism prevents renal ischemia reperfusion injury[J]. J Am Soc Nephrol, 2014, 25 (12): 2717-2729.
|
39 |
Bhatt K, Kato M, Natarajan R. Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases[J]. Am J Physiol Renal Physiol, 2016, 310 (2): F109-F118.
|
40 |
Aguado-Fraile E, Ramos E, Conde E, et al. A pilot study identifying a set of microRNAs as precise diagnostic biomarkers of acute kidney injury[J]. PLoS One, 2015, 10 (6): e0127175.
|