切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2019, Vol. 12 ›› Issue (06) : 415 -419. doi: 10.3877/cma.j.issn.1674-6880.2019.06.012

所属专题: 文献

综述

非编码RNA在急性肾损伤中的应用
李敏1, 原娇娇1, 陈宇1, 常雪妮1, 董晨明1,()   
  1. 1. 730030 兰州,兰州大学第二医院急危重症科
  • 收稿日期:2019-01-22 出版日期:2019-12-01
  • 通信作者: 董晨明
  • Received:2019-01-22 Published:2019-12-01
引用本文:

李敏, 原娇娇, 陈宇, 常雪妮, 董晨明. 非编码RNA在急性肾损伤中的应用[J]. 中华危重症医学杂志(电子版), 2019, 12(06): 415-419.

1
Sawhney S, Fraser SD. Epidemiology of AKI: utilizing large databases to determine the burden of AKI[J]. Adv Chronic Kidney Dis, 2017, 24 (4): 194-204.
2
Schetz M, Schneider A. Focus on acute kidney injury[J]. Intensive Care Med, 2017, 43 (9): 1421-1423.
3
吴灵萍,张萍,蒋华,等. ICU急性肾损伤患者连续肾脏替代疗法临床分析[J/CD].中华危重症医学杂志(电子版),2017,10(5):322-327.
4
Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes[J]. Kidney Int, 2012, 81 (9): 819-825.
5
Ostermann M, Liu K. Pathophysiology of AKI[J]. Best Pract Res Clin Anaesthesiol, 2017, 31 (3): 305-314.
6
Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches[J]. Physiol Rev, 2016, 96 (4): 1297-1325.
7
Ren GL, Zhu J, Li J, et al. Noncoding RNAs in acute kidney injury[J]. J Cell Physiol, 2019, 234 (3): 2266-2276.
8
Bali KK, Kuner R. Noncoding RNAs: key molecules in understanding and treating pain[J]. Trends Mol Med, 2014, 20 (8): 437-448.
9
Zhou Y, Zhang L, Ji H, et al. MiR-17~92 ablation impairs liver regeneration in an estrogen-dependent manner[J]. J Cell Mol Med, 2016, 20 (5): 939-948.
10
Martinez-Sanchez A, Nguyen-Tu MS, Rutter GA. DIC-ER inactivation identifies pancreatic beta-cell "disallowed" genes targeted by microRNAs[J]. Mol Endocrinol, 2015, 29 (7): 1067-1079.
11
Borsani G, Tonlorenzi R, Simmler MC, et al. Charac-terization of a murine gene expressed from the inactive X chromosome[J]. Nature, 1991, 351 (6324): 325-329.
12
Ingolia NT, Lareau LF, Weissman JS. Ribosome pro-filing of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes[J]. Cell, 2011, 147 (4): 789-802.
13
Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms[J]. RNA Biol, 2010, 7 (5): 582-585.
14
Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs[J]. Nucleic Acids Res, 2012, 40 (14): 6391-6400.
15
Meng X, Chen Q, Zhang P, et al. CircPro: an inte-grated tool for the identification of circRNAs with protein-coding potential[J]. Bioinformatics, 2017, 33 (20): 3314-3316.
16
Xu T, Wu J, Han P, et al. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data[J]. BMC Genomics, 2017, 18 (Suppl 6): 680.
17
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation[J]. Nat Struct Mol Biol, 2013, 20 (3): 300-307.
18
Zhou Q, Huang XR, Yu J, et al. Long noncoding RNA Arid2-IR is a novel therapeutic target for renal inflammation[J]. Mol Ther, 2015, 23 (6): 1034-1043.
19
Zhou Q, Huang XR, Yu J, et al. Identification of novel long noncoding RNAs associated with TGF-beta/Smad3-mediated renal inflammation and fibrosis by RNA sequencing[J]. Am J Pathol, 2014, 184 (2): 409-417.
20
Chung AC, Huang XR, Zhou L, et al. Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice[J]. Nephrol Dial Transplant, 2009, 24 (5): 1443-1454.
21
Chen Y, Qiu J, Chen B, et al. Long non-coding RNA NEAT1 plays an important role in sepsis-induced acute kidney injury by targeting miR-204 and modulating the NF-kappaB pathway[J]. Int Immunopharmacol, 2018 (59): 252-260.
22
Huang W, Lan X, Li X, et al. Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFalpha and JNK/NF-kappaB pathways in HK-2 cells[J]. Int Immunopharmacol, 2017 (47): 134-140.
23
Li X, Zeng L, Cao C, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy[J]. Exp Cell Res, 2017, 350 (2): 327-335.
24
Ding Y, Guo F, Zhu T, et al. Mechanism of long n-on-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-kappaB signaling pathway[J]. Int J Mol Med, 2018, 41 (1): 446-454.
25
Yu TM, Palanisamy K, Sun KT, et al. RANTES me-diates kidney ischemia reperfusion injury through a possible role of HIF-1alpha and LncRNA PRINS[J]. Sci Rep, 2016 (6): 18424.
26
Lin J, Zhang X, Xue C, et al. The long noncoding RNA landscape in hypoxic and inflammatory renal epithelial injury[J]. Am J Physiol Renal Physiol, 2015, 309 (11): F901-F913.
27
Liu X, Li D, Zhang W, et al. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay[J]. EMBO J, 2012, 31 (23): 4415-4427.
28
Xu Y, Tong Y, Zhu J, et al. An increase in long n-on-coding RNA PANDAR is associated with poor prognosis in clear cell renal cell carcinoma[J]. BMC Cancer, 2017, 17 (1): 373.
29
Zhang A, Zhou N, Huang J, et al. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage[J]. Cell Res, 2013, 23 (3): 340-350.
30
Liu Q, Huang J, Zhou N, et al. LncRNA loc285194 is a p53-regulated tumor suppressor[J]. Nucleic Acids Res, 2013, 41 (9): 4976-4987.
31
Tang C, Ma Z, Zhu J, et al. P53 in kidney injury and repair: mechanism and therapeutic potentials[J]. Pharmacol Ther, 2019 (195): 5-12.
32
Tano K, Mizuno R, Okada T, et al. MALAT-1 enh-ances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes[J]. FEBS Lett, 2010, 584 (22): 4575-4580.
33
Michalik KM, You X, Manavski Y, et al. Long non-coding RNA MALAT1 regulates endothelial cell function and vessel growth[J]. Circ Res, 2014, 114 (9): 1389-1397.
34
Lorenzen JM, Schauerte C, Kielstein JT, et al. Circ-ulating long noncoding RNATapSaki is a predictor of mortality in critically ill patients with acute kidney injury[J]. Clin Chem, 2015, 61 (1): 191-201.
35
Lorenzen JM, Schauerte C, Kolling M, et al. Long noncoding RNAs in urine are detectable and may enable early detection of acute T cell-mediated rejection of renal allografts[J]. Clin Chem, 2015, 61 (12): 1505-1514.
36
Huang YS, Hsieh HY, Shih HM, et al. Urinary Xist is a potential biomarker for membranous nephropathy[J]. Biochem Biophys Res Commun, 2014, 452 (3): 415-421.
37
Li YF, Jing Y, Hao J, et al. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Protein Cell, 2013, 4 (11): 813-819.
38
Lorenzen JM, Kaucsar T, Schauerte C, et al. MicroR-NA-24 antagonism prevents renal ischemia reperfusion injury[J]. J Am Soc Nephrol, 2014, 25 (12): 2717-2729.
39
Bhatt K, Kato M, Natarajan R. Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases[J]. Am J Physiol Renal Physiol, 2016, 310 (2): F109-F118.
40
Aguado-Fraile E, Ramos E, Conde E, et al. A pilot study identifying a set of microRNAs as precise diagnostic biomarkers of acute kidney injury[J]. PLoS One, 2015, 10 (6): e0127175.
No related articles found!
阅读次数
全文


摘要