切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2019, Vol. 12 ›› Issue (04) : 240 -244. doi: 10.3877/cma.j.issn.1674-6880.2019.04.005

所属专题: 文献

论著

结核分枝杆菌感染对非小细胞肺癌患者调节性免疫细胞的负向调节作用
宁洪叶1, 蒋贤高1,(), 施伎蝉1, 何贵清1, 吴正兴1   
  1. 1. 325000 浙江温州,温州市中心医院感染科
  • 收稿日期:2019-01-11 出版日期:2019-08-01
  • 通信作者: 蒋贤高

Negative regulation of Mycobacterium tuberculosis infection on regulatory immune cells in patients with non-small cell lung cancer

Hongye Ning1, Xiangao Jiang1,(), Jichan Shi1, Guiqing He1, Zhengxing Wu1   

  1. 1. Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou 325000, China
  • Received:2019-01-11 Published:2019-08-01
  • Corresponding author: Xiangao Jiang
  • About author:
    Corresponding author: Jiang Xiangao, Email:
引用本文:

宁洪叶, 蒋贤高, 施伎蝉, 何贵清, 吴正兴. 结核分枝杆菌感染对非小细胞肺癌患者调节性免疫细胞的负向调节作用[J]. 中华危重症医学杂志(电子版), 2019, 12(04): 240-244.

Hongye Ning, Xiangao Jiang, Jichan Shi, Guiqing He, Zhengxing Wu. Negative regulation of Mycobacterium tuberculosis infection on regulatory immune cells in patients with non-small cell lung cancer[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2019, 12(04): 240-244.

目的

探讨结核分枝杆菌感染对非小细胞肺癌患者调节性免疫细胞的负向调节作用。

方法

选择2014年3月到2018年3月温州市中心医院就诊的非小细胞肺癌合并结核分枝杆菌感染患者为感染组(10例),单纯非小细胞肺癌患者为肿瘤组(10例),同期选择10例健康体检者为对照组。采用免疫组织化学法检测Ki-67增殖水平;采用流式细胞术检测CD4+CD25+Foxp3+调节性T(Treg)细胞和CD19+IL-10+调节性B(Breg)细胞的比例。

结果

肿瘤组Ki-67的比例为(35 ± 4)%,感染组为(66 ± 6)%,感染组Ki-67的比例显著高于肿瘤组(t = 4.068,P < 0.001)。三组肺癌合并结核患者外周血CD4+CD25+Foxp3+Treg细胞、CD19+IL-10+Breg细胞比例的比较,差异均有统计学意义(F = 69.400,P < 0.001;F = 16.090,P < 0.001)。且与肿瘤组CD4+CD25+Foxp3+Treg细胞比例[(0.41 ± 0.03)%、(0.21 ± 0.03)%、(1.03 ± 0.08)%]、CD19+IL-10+Breg细胞比例[(0.429 ± 0.021)%、(0.268 ± 0.013)%、(0.783 ± 0.111)%]比较,对照组均显著降低,而感染组均显著升高(P均< 0.05)。

结论

非小细胞肺癌合并结核分枝杆菌感染患者外周血中Treg细胞和Breg细胞比例显著升高。

Objective

To investigate the effect of Mycobacterium tuberculosis infection on regulatory immune cells in patients with non-small cell lung cancer (NSCLC).

Methods

The NSCLC patients in Wenzhou Central Hospital between March 2014 and March 2018 were selected as the infection group (n = 10) and cancer group (n = 10) according to whether suffering from Mycobacterium tuberculosis infection. Ten healthy subjects were enrolled as the control group at the same time. The proliferation level of Ki-67 was detected by immunohistochemistry. The flow cytometry was used to detect CD4+CD25+Foxp3+ regulatory T (Treg) cells and CD19+IL-10+ regulatory B (Breg) cells.

Results

The proportion of Ki-67 was (35 ± 4)% in the cancer group and (66 ± 6)% in the infection group; it was much higher in the infection group than in the cancer group (t = 4.068, P < 0.001). The proportion of CD4+CD25+Foxp3+Treg cells and CD19+IL-10+Breg cells among three groups all showed significant differences (F = 69.400, P < 0.001; F = 16.090, P < 0.001). Compared with the cancer group, the proportion of CD4+CD25+Foxp3+Treg cells [(0.41 ± 0.03)%, (0.21 ± 0.03)%, (1.03 ± 0.08)%] and CD19+IL-10+Breg cells[(0.429 ± 0.021)%, (0.268 ± 0.013)%, (0.783 ± 0.111)%] decreased markedly in the control group, and increased obviously in the infection group (all P < 0.05).

Conclusion

The proportion of Treg and Breg cells in peripheral blood of NSCLC patients with tuberculosis infection is significantly higher.

图1 非小细胞肺癌合并结核患者结核感染部位HE染色和抗酸染色结果
图2 肿瘤组和感染组患者癌细胞病理图
图3 各组患者Treg细胞比例的比较(n = 10)
图4 各组患者外周血Breg细胞比例的比较(n = 10)
1
Chen X, Zhang LW, Huang JJ, et al. Long-term exposure to urban air pollution and lung cancer mortality: a 12-year cohort study in Northern China[J]. Sci Total Environ, 2016 (571): 855-861.
2
Olea-Popelka F, Muwonge A, Perera A, et al. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis-a call for action[J]. Lancet Infect Dis, 2017, 17 (1): e21-e25.
3
Hong S, Mok Y, Jeon C, et al. Tuberculosis, smoking and risk for lung cancer incidence and mortality[J]. Int J Cancer, 2016, 139 (11): 2447-2455.
4
Kim YK, Lee KS, Kim BT, et al. Mediastinal nodal staging of nonsmall cell lung cancer using integrated 18F-FDG PET/CT in a tuberculosis-endemic country: diagnostic efficacy in 674 patients[J]. Cancer, 2007, 109 (6): 1068-1077.
5
Ercegovac M, Subotic D, Zugic V, et al. Postoperative complications do not influence the pattern of early lung function recovery after lung resection for lung cancer in patients at risk[J]. J Cardiothorac Surg, 2014 (9): 92.
6
Chinen T, Kannan AK, Levine AG, et al. An essential role for the IL-2 receptor in Treg cell function[J]. Nat Immunol, 2016, 17 (11): 1322-1333.
7
Gerriets VA, Kishton RJ, Johnson MO, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression[J]. Nat Immunol, 2016, 17 (12): 1459-1466.
8
Dyck L, Wilk MM, Raverdeau M, et al. Anti-PD-1 inhibits Foxp3+ Treg cell conversion and unleashes intratumoural effector T cells thereby enhancing the efficacy of a cancer vaccine in a mouse model[J]. Cancer Immunol Immunother, 2016, 65 (12): 1491-1498.
9
Rossetti M, Spreafico R, Consolaro A, et al. TCR repertoire sequencing identifies synovial Treg cell clonotypes in the bloodstream during active inflammation in human arthritis[J]. Ann Rheum Dis, 2017, 76 (2): 435-441.
10
Jiang T, Ren S, Li X, et al. The changing diagnostic pathway for lung cancer patients in Shanghai, China[J]. Eur J Cancer, 2017 (84): 168-172.
11
Zhang B, Zhang Y, Yu D. Lung cancer gene therapy: transferrin and hyaluronic acid dual ligand-decorated novel lipid carriers for targeted gene delivery[J]. Oncol Rep, 2017, 37 (2): 937-944.
12
Amreddy N, Babu A, Muralidharan R, et al. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment[J]. Top Curr Chem (Cham), 2017, 375 (2): 35.
13
Zheng QW, Zhou YL, You QJ, et al. WWOX inhibits the invasion of lung cancer cells by downregulating RUNX2[J]. Cancer Gene Ther, 2016, 23 (12): 433-438.
14
Lin J, Wang Y, Zou YQ, et al. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia[J]. Tumour Bio, 2016. [Epub ahead of print]
15
Dagaonkar RS, Choong CV, Asmat AB, et al. Significance of coexistent granulomatous inflammation and lung cancer[J]. J Clin Pathol, 2017, 70 (4): 337-341.
16
Koyama K, Kagamu H, Miura S, et al. Reciprocal CD4+ T-cell balance of effector CD62Llow CD4+ and CD62LhighCD25+ CD4+ regulatory T cells in small cell lung cancer reflects disease stage[J]. Clin Cancer Res, 2008, 14 (21): 6770-6779.
17
Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why?[J]. Semin Cancer Biol, 2012, 22 (4): 327-334.
18
Young MR, Levingston CA, Johnson SD. Treatment to sustain a Th17-type phenotype to prevent skewing toward Treg and to limit premalignant lesion progression to cancer[J]. Int J Cancer, 2016, 138 (10): 2487-2498.
19
Bos PD. TREG cells in cancer: beyond classical immunological control[J]. Immunol Invest, 2016, 45 (8): 721-728.
20
Wang Z, Cheng Q, Tang K, et al. Lipid mediator lipoxin A4 inhibits tumor growth by targeting IL-10-producing regulatory B (Breg) cells[J]. Cancer Lett, 2015, 364 (2): 118-124.
21
Inoue S, Scott D, Golding B, et al. Regulatory B cells inhibit antitumor immunity[J]. Cancer Res, 2007, 67 (10): 5059.
22
Lindner S, Dahlke K, Sontheimer K, et al. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells[J]. Cancer Res, 2013, 73 (8): 2468-2479.
[1] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[2] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[3] 廖锵云, 王震, 林洁玉, 廖夏, 邓锦华, 李杰峰, 邓建维, 李明, 荣新洲. 虎门地区创伤弧菌感染的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 394-398.
[4] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[5] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[6] 李静如, 王江玲, 吴向阳. 简易负压引流在腹股沟疝术后浅部感染中的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 745-749.
[7] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[8] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[9] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[10] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[11] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[12] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[13] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[14] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要