切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2018, Vol. 11 ›› Issue (06) : 361 -365. doi: 10.3877/cma.j.issn.1674-6880.2018.06.001

所属专题: 文献

论著

老年肌少症患者骨骼肌质量指数与肥胖、骨质疏松及肠道菌群的相关性研究
李姝敏1, 汪晶美1, 李晗宇1, 吴月1, 杨霁1, 杨云梅1,()   
  1. 1. 310003 杭州,浙江大学医学院附属第一医院老年病科
  • 收稿日期:2018-10-13 出版日期:2018-12-01
  • 通信作者: 杨云梅
  • 基金资助:
    浙江省公益技术研究计划(LGF19H250001); 浙江省医药卫生科技计划项目(2018KY403); 浙江省医药卫生科技计划项目(2018KY372); 国家临床重点专科(老年病科)建设项目(国卫办医函[2013]544号)

Correlation between skeletal muscle index and obesity, osteoporosis, intestinal microflora in aged patients with sarcopenia

Shumin Li1, Jingmei Wang1, Hanyu Li1, Yue Wu1, Ji Yang1, Yunmei Yang1,()   

  1. 1. Department of Geriatrics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
  • Received:2018-10-13 Published:2018-12-01
  • Corresponding author: Yunmei Yang
  • About author:
    Corresponding author: Yang Yunmei, Email:
引用本文:

李姝敏, 汪晶美, 李晗宇, 吴月, 杨霁, 杨云梅. 老年肌少症患者骨骼肌质量指数与肥胖、骨质疏松及肠道菌群的相关性研究[J/OL]. 中华危重症医学杂志(电子版), 2018, 11(06): 361-365.

Shumin Li, Jingmei Wang, Hanyu Li, Yue Wu, Ji Yang, Yunmei Yang. Correlation between skeletal muscle index and obesity, osteoporosis, intestinal microflora in aged patients with sarcopenia[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2018, 11(06): 361-365.

目的

探讨老年肌少症患者骨骼肌质量指数(SMI)与肥胖、骨质疏松的相关性,并分析不同SMI老年肌少症患者肠道菌群分布情况。

方法

将103例老年肌少症患者根据入选者SMI的均值(男5.1 kg / m2,女4.3 kg /m2)分为低SMI组(男38例,女11例)与极低SMI组(男43例,女11例)。对不同性别两组肌少症患者SMI、体质量指数(BMI)、全身脂肪百分比、髋关节密度及股骨颈密度进行比较,并采用Pearson检验分析SMI与上述指标间的相关性。同时,采用PCR技术检测患者肠道菌群的含量。

结果

在老年男性患者中,极低SMI组的SMI[(4.4 ± 0.5)kg / m2 vs.(5.8 ± 0.5)kg / m2]与BMI[(21.6 ± 2.9)kg / m2 vs.(24.8 ± 3.1)kg / m2]显著低于低SMI组(t = 12.062,P < 0.001;t = 4.740,P < 0.001)。在老年女性中,极低SMI组的SMI显著低于低SMI组[(3.8 ± 0.3)kg / m2 vs.(4.8 ± 0.8)kg / m2t = 7.065,P < 0.001]。同时,在老年男性中,SMI与BMI成正相关(r = 0.521,P < 0.001),普拉梭菌[2.87(0.42,10.86)× 106拷贝数/ g vs. 9.57(1.33,36.04)× 106拷贝数/ g]、梭菌属Ⅰ族[3.03(0.39,20.47)× 104拷贝数/ g vs. 15.94(3.57,48.88)× 104拷贝数/ g]在极低SMI组的含量均显著少于低SMI组(Z = 1.987,P = 0.047;Z = 2.943,P = 0.003)。在老年女性中,SMI与全身脂肪百分比成负相关(r = -0.447,P = 0.029);与低SMI组比较,极低SMI组患者肠球菌含量显著减少[2.56(0.20,54.82)× 104拷贝数/ g vs. 0.28(0.01,1.55)× 104拷贝数/ g,Z = 2.068,P = 0.040],梭菌属Ⅰ族含量显著增加[1.18(0.37,11.73)× 104拷贝数/ g vs. 16.88(5.22,66.79)× 104拷贝数/ g,Z = 2.134,P = 0.034]。

结论

老年肌少症患者SMI与BMI及全身脂肪百分比显著相关,且肠道菌群在不同程度的SMI间有所差异。

Objective

To investigate the correlation of skeletal muscle index (SMI) with obesity and osteoporosis, and to explore the changes of intestinal microflora in different SMI aged patients with sarcopenia.

Methods

Totally 103 aged patients with sarcopenia were divided into the low SMI group (38 males, 11 females) and very low SMI group (43 males, 11 females) according to the mean SMI (male: 5.1 kg / m2, female: 4.3 kg / m2). The SMI, body mass index (BMI), total body fat percentage, hip density and femoral neck density were measured, and the correlation between SMI and above indicators was analyzed by the Pearson test. Mean-while, the intestinal microflora was detected by PCR.

Results

In aged male patients, the levels of SMI[(4.4 ± 0.5) kg / m2 vs. (5.8 ± 0.5) kg / m2] and BMI [(21.6 ± 2.9) kg / m2 vs. (24.8 ± 3.1) kg / m2] in the very low SMI group were much lower than those in the low SMI group (t = 12.062, P < 0.001; t = 4.740, P < 0.001). In aged female patients, only the SMI level in the very low SMI group was much lower than that in the low SMI group [(3.8 ± 0.3) kg / m2 vs. (4.8 ± 0.8) kg / m2, t = 7.065, P < 0.001]. Meanwhile, in aged male patients, the SMI was positively correlated with BMI (r = 0.521, P < 0.001), and the contents of Faecali-bacterium prausnitzii [2.87 (0.42, 10.86) × 106 copies / g vs. 9.57 (1.33, 36.04) × 106 copies / g] and Clostridium cluster I [3.03 (0.39, 20.47) × 104 copies / g vs. 15.94 (3.57, 48.88) × 104 copies / g] in the very low SMI group were much lower than those in the low SMI group (Z = 1.987, P = 0.047; Z = 2.943, P = 0.003). In aged female patients, the SMI was negatively correlated with total body fat percentage (r = -0.447, P = 0.029), and compared with the low SMI group, the content of Enterococcus decreased [2.56 (0.20, 54.82) × 104 copies / g vs. 0.28 (0.01, 1.55) × 104 copies / g, Z = 2.068, P = 0.040], and the content of Clostridium cluster I increased significantly [1.18 (0.37, 11.73) × 104 copies / g vs. 16.88 (5.22, 66.79) × 104 copies / g, Z = 2.134, P = 0.034].

Conclusion

The SMI is related to the BMI and total body fat percentage in elderly patients with sarcopenia, and the content of intestinal microflora varies with different SMI degrees.

表1 两组男性肌少症老年患者一般资料的比较( ± s
表2 两组女性肌少症老年患者一般资料的比较( ± s
表3 两组男性肌少症老年患者各肠道细菌的比较[拷贝数/ g,MP25P75)]
表4 两组女性肌少症老年患者各肠道细菌的比较[拷贝数/ g,MP25P75)]
1
Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia[J]. J Am Med Dir Assoc, 2014, 15 (2): 95-101.
2
Dennison EM, Sayer AA, Cooper C. Epidemiology of sarcopenia and insight into possible therapeutic targets[J]. Nat Rev Rheumatol, 2017, 13 (6): 340-347.
3
Beyer I, Mets T, Bautmans I. Chronic low-grade infla-mmation and age-related sarcopenia[J]. Curr Opin Clin Nutr Metab Care, 2012, 15 (1): 12-22.
4
Buford TW. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease[J]. Microbiome, 2017, 5 (1): 80.
5
Yoshimura N, Muraki S, Oka H, et al. Is osteoporosis a predictor for future sarcopenia or vice versa? Four-year observations between the second and third ROAD study surveys[J]. Osteoporos Int, 2017, 28 (1): 189-199.
6
Kim JE, Lee YH, Huh JH, et al. Early-stage chronic kidney disease, insulin resistance, and osteoporosis as risk factors of sarcopenia in aged population: the fourth Korea National Health and Nutrition Examination Survey (KNHANES Ⅳ), 2008-2009[J]. Osteoporos Int, 2014, 25 (9): 2189-2198.
7
Lindsey C, Brownbill RA, Bohannon RA, et al. Asso-ciation of physical performance measures with bone mineral density in postmenopausal women[J]. Arch Phys Med Rehabil, 2005, 86 (6): 1102-1107.
8
Wannamethee SG, Atkins JL. Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity[J]. Proc Nutr Soc, 2015, 74 (4): 405-412.
9
Bindels LB, Beck R, Schakman O, et al. Restoring s-pecific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J]. PLoS One, 2012, 7 (6): e37971.
10
Bindels LB, Delzenne NM. Muscle wasting: the gut microbiota as a new therapeutic target?[J]. Int J Biochem Cell Biol, 2013, 45 (10): 2186-2190.
11
Collins MD, Lawson PA, Willems A, et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations[J]. Int J Syst Bacteriol, 1994, 44 (4): 812-826.
12
Udaondo Z, Duque E, Ramos JL. The pangenome of the genus Clostridium[J]. Environ Microbiol, 2017, 19 (7): 2588-2603.
13
Liao X, Wu R, Ma G, et al. Effects of Clostridium butyricum on antioxidant properties, meat quality and fatty acid composition of broiler birds[J]. Lipids Health Dis, 2015 (14): 36.
14
Smith GI, Julliand S, Reeds DN, et al. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults[J]. Am J Clin Nutr, 2015, 102 (1): 115-122.
15
Drachman DB, Johnston DM. Neurotrophic regulation of dynamic properties of skeletal muscle: effects of botulinum toxin and denervation[J]. J Physiol, 1975, 252 (3): 657-667.
16
Munukka E, Rintala A, Toivonen R, et al. Faecalib-acterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice[J]. ISME J, 2017, 11 (7): 1667-1679.
17
Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J]. Gut, 2009, 58 (8): 1091-1103.
18
Picca A, Fanelli F, Calvani R, et al. Gut dysbiosis and muscle aging: searching for novel targets against sarcopenia[J]. Mediators Inflamm, 2018: 7026198.
19
Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians[J]. PLoS One, 2010, 5 (5): e10667.
20
Ticinesi A, Lauretani F, Milani C, et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis?[J]. Nutrients, 2017, 9 (12): E1303.
[1] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[2] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[3] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[4] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[5] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[6] 宋俊锋, 张珍珍. 单侧初发性腹股沟斜疝老年患者经腹腹膜前疝修补术中残余疝囊腹直肌下缘固定效果评估[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 670-674.
[7] 张晋伟, 董永红, 王家璇. 基于GBD2021 数据库对中国与全球老年人疝疾病负担和健康不平等的分析比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 708-716.
[8] 玉素江·图荪托合提, 韩琦, 麦麦提艾力·麦麦提明, 黄旭东, 王浩, 克力木·阿不都热依木, 艾克拜尔·艾力. 腹腔镜袖状胃切除或联合食管裂孔疝修补术对肥胖症合并胃食管反流病的中期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 501-506.
[9] 袁志静, 黄杰, 何国安, 方辉强. 罗哌卡因联合右美托咪定局部阻滞麻醉在老年腹腔镜下无张力疝修补术中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 557-561.
[10] 刘见, 杨晓波, 何均健, 等. 应用电钩三孔法腹腔镜袖状胃切除术[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(06): 363-364.
[11] 黄韬, 杨晓华, 薛天森, 肖睿. 改良“蛋壳”技术治疗老年OVCF及对脊柱矢状面平衡参数、预后的影响[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 340-348.
[12] 谭明明, 战世强, 侯宏涛, 曾翔硕. 经皮微创椎弓根螺钉内固定术对骨质疏松脊柱压缩性骨折患者临床研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 349-354.
[13] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[14] 王芳, 刘达, 左智炜, 盛金平, 陈庭进, 蒋锐. 定量CT与双能X线骨密度仪对骨质疏松诊断效能比较的Meta分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 363-371.
[15] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
阅读次数
全文


摘要