1 |
Chamorro A, Dirnagl U, Urra X, et al. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation[J]. Lancet Neurol, 2016, 15 (8): 869-881.
|
2 |
中华医学会神经病学分会脑血管病学组急性缺血性脑卒中诊治指南撰写组. 中国急性缺血性脑卒中诊治指南2010[J]. 中华神经科杂志,2010,43(2):146-153.
|
3 |
Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms[J]. Nature, 1999, 399 (6738 Suppl): A7-A14.
|
4 |
中华医学会神经病学分会,中华医学会神经病学分会神经血管介入协作组,急性缺血性脑卒中介入诊疗指南撰写组. 中国急性缺血性脑卒中早期血管内介入诊疗指南[J]. 中华神经科杂志,2015,48(5):356-361.
|
5 |
Kahles T, Luedike P, Endres M, et al. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke[J]. Stroke, 2007, 38 (11): 3000-3006.
|
6 |
Jung JE, Kim GS, Chen H, et al. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection[J]. Mol Neurobiol, 2010, 41 (2-3): 172-179.
|
7 |
Rodrigo R, Fernandez-Gajardo R, Gutierrez R, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities[J]. CNS Neurol Disord Drug Targets, 2013, 12 (5): 698-714.
|
8 |
Flamm ES, Demopoulos HB, Seligman ML, et al. Free radicals in cerebral ischemia[J]. Stroke, 1978, 9 (5): 445-447.
|
9 |
Murakami K, Kondo T, Kawase M, et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency[J]. J Neurosci, 1998, 18 (1): 205-213.
|
10 |
Chen H, Yoshioka H, Kim GS, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection[J]. Antioxid Redox Signal, 2011, 14 (8): 1505-1517.
|
11 |
Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke[J]. Free Radic Biol Med, 2005, 39 (4): 429-443.
|
12 |
Jung JE, Kim GS, Chen H, et al. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection[J]. Mol Neurobiol, 2010, 41 (2-3): 172-179.
|
13 |
Wahlgren NG, Ahmed N. Neuroprotection in cerebral ischaemia: facts and fancies -- the need for new approaches[J]. Cerebrovasc Dis, 2004 (17 Suppl 1): 153-166.
|
14 |
Chan PH. Role of oxidants in ischemic brain damage[J]. Stroke, 1996, 27 (6): 1124-1129.
|
15 |
Nayernia Z, Jaquet V, Krause KH. New insights on NOX enzymes in the central nervous system[J]. Antioxid Redox Signal, 2014, 20 (17): 2815-2837.
|
16 |
Ha JS, Lee JE, Lee JR, et al. Nox4-dependent H2O2 production contributes to chronic glutamate toxicity in primary cortical neurons[J]. Exp Cell Res, 2010, 316 (10): 1651-1661.
|
17 |
Tejada-Simon MV, Serrano F, Villasana LE, et al. Synaptic localization of a functional NADPH oxidase in the mouse hippocampus[J]. Mol Cell Neurosci, 2005, 29 (1): 97-106.
|
18 |
Schiavone S, Jaquet V, Sorce S, et al. NADPH oxidase elevations in pyramidal neurons drive psychosocial stress-induced neuropathology[J]. Transl Psychiatry, 2012, 2 (5): e111.
|
19 |
Suzukawa K, Miura K, Mitsushita J, et al. Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species[J]. J Biol Chem, 2000, 275 (18): 13175-13178.
|
20 |
Reinehr R, Gorg B, Becker S, et al. Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices[J]. Glia, 2007, 55 (7): 758-771.
|
21 |
Liu Q, Kang JH, Zheng RL. NADPH oxidase produces reactive oxygen species and maintains survival of rat astrocytes[J]. Cell Biochem Funct, 2005, 23 (2): 93-100.
|
22 |
Li B, Bedard K, Sorce S, et al. NOX4 expression in human microglia leads to constitutive generation of reactive oxygen species and to constitutive IL-6 expression[J]. J Innate Immun, 2009, 1 (6): 570-581.
|
23 |
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms[J]. Nat Rev Neurosci, 2007, 8 (1): 57-69.
|
24 |
Chrissobolis S, Faraci FM. The role of oxidative stress and NADPH oxidase in cerebrovascular disease[J]. Trends Mol Med, 2008, 14 (11): 495-502.
|
25 |
Miller AA, Budzyn K, Sobey CG. Vascular dysfunction in cerebrovascular disease: mechanisms and therapeutic intervention[J]. Clin Sci (Lond), 2010, 119 (1): 1-17.
|
26 |
Radermacher KA, Wingler K, Langhauser F, et al. Neuroprotection after stroke by targeting NOX4 as a source of oxidative stress[J]. Antioxid Redox Signal, 2013, 18 (12): 1418-1427.
|
27 |
Jackman KA, Miller AA, Drummond GR, et al. Importance of NOX1 for angiotensin Ⅱ-induced cerebrovascular superoxide production and cortical infarct volume following ischemic stroke[J]. Brain Res, 2009 (1286): 215-220.
|
28 |
Kahles T, Kohnen A, Heumueller S, et al. NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice[J]. Neurobiol Dis, 2010, 40 (1): 185-192.
|
29 |
Kleinschnitz C, Grund H, Wingler K, et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration[J]. PLoS Biol, 2010, 8 (9): 1-13.
|
30 |
Mccann SK, Dusting GJ, Roulston CL. Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats[J]. J Neurosci Res, 2008, 86 (11): 2524-2534.
|
31 |
Tang XN, Zheng Z, Giffard RG, et al. Significance of marrow-derived nicotinamide adenine dinucleotide phosphate oxidase in experimental ischemic stroke[J]. Ann Neurol, 2011, 70 (4): 606-615.
|
32 |
Walder CE, Green SP, Darbonne WC, et al. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase[J]. Stroke, 1997, 28 (11): 2252-2258.
|
33 |
Chen H, Kim GS, Okami N, et al. NADPH oxidase is involved in post-ischemic brain inflammation[J]. Neurobiol Dis, 2011, 42 (3): 341-348.
|
34 |
Kahles T, Luedike P, Endres M, et al. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke[J]. Stroke, 2007, 38 (11): 3000-3006.
|
35 |
Vallet P, Charnay Y, Steger K, et al. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia[J]. Neuroscience, 2005, 132 (2): 233-238.
|
36 |
Nagel S, Genius J, Heiland S, et al. Diphenyleneiodonium and dimethylsulfoxide for treatment of reperfusion injury in cerebral ischemia of the rat[J]. Brain Res, 2007, 1132 (1): 210-217.
|
37 |
Heumuller S, Wind S, Barbosa-Sicard E, et al. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant[J]. Hypertension, 2008, 51 (2): 211-217.
|
38 |
Williams HC, Griendling KK. NADPH oxidase inhibitors: new antihypertensive agents?[J]. J Cardiovasc Pharmacol, 2007, 50 (1): 9-16.
|
39 |
Kahles T, Brandes RP. NADPH oxidases as therapeutic targets in ischemic stroke[J]. Cell Mol Life Sci, 2012, 69 (14): 2345-2363.
|
40 |
Weston RM, Lin B, Dusting GJ, et al. Targeting oxidative stress injury after ischemic stroke in conscious rats: limited benefits with apocynin highlight the need to incorporate long term recovery[J]. Stroke Res Treat, 2013, 648061.
|
41 |
Lu X, Murphy TC, Nanes MS, et al. PPAR{gamma} regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-{kappa}B[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 299 (4): L559-L566.
|
42 |
Lee CH, Park OK, Yoo KY, et al. The role of peroxisome proliferator-activated receptor gamma, and effects of its agonist, rosiglitazone, on transient cerebral ischemic damage[J]. J Neurol Sci, 2011, 300 (1-2): 120-129.
|
43 |
Ten FH, Huntgeburth M, Wingler K, et al. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation[J]. Cardiovasc Res, 2006, 71 (2): 331-341.
|