切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2017, Vol. 10 ›› Issue (04) : 279 -283. doi: 10.3877/cma.j.issn.1674-6880.2017.04.015

所属专题: 文献

综述

外泌体在肝脏疾病中的作用研究
任彩瑗1, 任锋2,()   
  1. 1. 030001 太原,山西医科大学第二医院中医院
    2. 100069 北京,首都医科大学附属北京佑安医院肝病研究所
  • 收稿日期:2017-04-12 出版日期:2017-08-01
  • 通信作者: 任锋
  • 基金资助:
    国家自然科学基金项目(81270532); 北京市自然科学基金项目(7162085); 首都特色临床应用研究项目(Z121107001012167); 北京市卫生系统高层次卫生技术人才培养计划项目(2013-3-075); 北京市属医学科研院所公益发展改革试点项目(京医研2016-2)
  • Received:2017-04-12 Published:2017-08-01
引用本文:

任彩瑗, 任锋. 外泌体在肝脏疾病中的作用研究[J]. 中华危重症医学杂志(电子版), 2017, 10(04): 279-283.

1
Lemoinne S, Thabut D, Housset C, et al. The emerg-ing roles of microvesicles in liver diseases[J]. Nat Rev Gastroenterol Hepatol, 2014, 11 (6): 350-361.
2
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al. Functional delivery of viral miRNAs via exosomes[J]. Proc Natl Acad Sci USA, 2010, 107 (14): 6328-6333.
3
Bukong TN, Momen-Heravi F, Kodys K, et al. Exo-somes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90[J]. PLoS Pathog, 2014, 10 (10): e1004424.
4
Fensterl V, Sen GC. Interferons and viral infections[J]. Biofactors, 2009, 35 (1): 14-20.
5
Giugliano S, Kriss M, Golden-Mason L, et al. Hepatitis C virus infection induces autocrine interferon signaling by human liver endothelial cells and release of exosomes, which inhibits viral replication[J]. Gastroenterology, 2015, 148 (2): e313.
6
Huang G, Brigstock DR. Regulation of hepatic stellate cells by connective tissue growth factor[J]. Front Biosci, 2012 (17): 2495-2507.
7
Chen L, Chen R, Kemper S, et al. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: role of exosomes in horizontal transfer of Twist1[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309 (6): G491-G499.
8
Charrier A, Chen R, Chen L, et al. Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver[J]. Surgery, 2014, 156 (3): 548-555.
9
Wang R, Ding Q, Yaqoob U, et al. Exosome adhe-rence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration[J]. J Biol Chem, 2015, 290 (52): 30684-30696.
10
Iwakiri Y, Groszmann RJ. Vascular endothelial dys-function in cirrhosis[J]. J Hepatol, 2007, 46 (5): 927-934.
11
Witek RP, Yang L, Liu R, et al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells[J]. Gastroenterology, 2009, 136 (1): 320-330.
12
Tomiyama T, Yang GX, Zhao M, et al. The modu-lation of co-stimulatory molecules by circulating exosomes in primary biliary cirrhosis[J]. Cell Mol Immunol, 2017, 14 (3): 276-284.
13
曹蕾,杨迷芳,平锋锋,等. 小鼠黑素瘤细胞系分泌的外泌体促进间充质基质细胞增殖和迁移[J]. 中华微生物学和免疫学杂志,2016,36(1):42-47.
14
Chiba M, Kimura M, Asari S. Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines[J]. Oncol Rep, 2012, 28 (5): 1551-1558.
15
Kogure T, Lin WL, Yan IK, et al. Intercellular nano-vesiclemediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth[J]. Hepatology, 2011, 54 (4): 1237-1248.
16
He M, Qin H, Poon TC, et al. Hepatocellular carci-noma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs[J]. Carcinogenesis, 2015, 36 (9): 1008-1018.
17
Dutta S, Reamtong O, Panvongsa W, et al. Proteomics profiling of cholangiocarcinoma exosomes: a potential role of oncogenic protein transferring in cancer progression[J]. Biochim Biophys Acta, 2015, 1852 (9): 1989-1999.
18
Haga H, Yan IK, Takahashi K, et al. Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth[J]. J Extracell Vesicles, 2015 (4): 24900.
19
Momen-Heravi F, Saha B, Kodys K, et al. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis[J]. J Transl Med, 2015, 13 (1): 261.
20
Saha B, Bruneau JC, Kodys K, et al. Alcohol-induced miR-27a regulates differentiation and M2 macrophage polarization of normal human monocytes[J]. J Immunol, 2015, 194 (7): 3079-3087.
21
Saha B, Momen-Heravi F, Kodys K, et al. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages[J]. J Biol Chem, 2016, 291 (1): 149-159.
22
Verma VK, Li H, Wang R, et al. Alcohol stimulates macrophage activation through caspase dependent hepatocyte derived release of CD40L containing extracellular vesicles[J]. J Hepatol, 2016, 64 (3): 651-660.
23
Povero D, Eguchi A, Li H, et al. Circulating extra-cellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease[J]. PLoS One, 2014, 9 (12): e113651.
24
Hirsova P, Ibrahim SH, Krishnan A, et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes[J]. Gastroenterology, 2016, 150 (4): 956-967.
25
Conde-Vancells J, Rodriguez-Suarez E, Gonzalez E, et al. Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples[J]. Proteomics Clin Appl, 2010, 4 (4): 416-425.
26
Rodriguez-Suarez E, Gonzalez E, Hughes C, et al. Quantitative proteomic analysis of hepatocyte-secreted extracellular vesicles reveals candidate markers for liver toxicity[J]. J Proteomics, 2014, 103 (3): 227-240.
27
Baker LA, Lee KC, Palacios Jimenez C, et al. Circulating microRNAs reveal time course of organ injury in a porcine model of acetaminophen-induced acute liver failure[J]. PLoS One, 2015, 10 (5): e0128076.
28
Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cellderived exosomes promote hepatic regeneration in drug-induced liver injury models[J]. Stem Cell Res Ther, 2014, 5 (3): 76.
29
Nojima H, Freeman CM, Schuster RM, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate[J]. J Hepatol, 2016, 64 (1): 60-68.
30
Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis[J]. Stem Cells Dev, 2013, 22 (6): 845-854.
31
Wang R, Ding Q, Yaqoob U, et al. Exosome adhe-rence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration[J]. J Biol Chem, 2015, 290 (52): 30684-30696.
32
Fonsato V, Collino F, Herrera MB, et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs[J]. Stem Cells, 2012, 30 (9): 1985-1998.
33
Zhang J, Shan WF, Jin TT, et al. Propofol exerts antihepatocellular carcinoma by microvesicle-mediated transfer of miR-142-3p from macrophage to cancer cells[J]. J Transl Med, 2014, 12 (1): 279.
34
Wu X, Wu S, Tong L, et al. MiR-122 affects the viability and apoptosis of hepatocellular carcinoma cells[J]. Scand J Gastroenterol, 2009, 44 (11): 1332-1339.
35
Bala S, Petrasek J, Mundkur S, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases[J]. Hepatology, 2012, 56 (5): 1946-1957.
36
Momen-Heravi F, Bala S, Kodys K, et al. Exosomes derived from alcoholtreated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS[J]. Sci Rep, 2015 (5): 9991.
37
Liu WH, Ren LN, Wang X, et al. Combination of exosomes and circulating microRNAs may serve as a promising tumor marker complementary to alpha-fetoprotein for early-stage hepatocellular carcinoma diagnosis in rats[J]. J Cancer Res Clin Oncol, 2015, 141 (10): 1767-1778.
38
Najafi Z, Sharifi M, Javadi G. Degradation of miR-21 induces apoptosis and inhibits cell proliferation in human hepatocellular carcinoma[J]. Cancer Gene Ther, 2015, 22 (11): 530-535.
39
陈俊伊,王懿春. 微小RNA-21和转化生长因子β1在急性呼吸窘迫综合症大鼠肺纤维化组织中的表达变化[J]. 中华危重症医学杂志(电子版),2016,9(4):132-137.
40
Lu L, Byrnes K, Han C, et al. MiR-21 targets 15-PGDH and promotes cholangiocarcinoma growth[J]. Mol Cancer Res, 2014, 12 (6): 890-900.
41
Lian J, Jing Y, Dong Q, et al. MiR-192, a prognostic indicator, targets the SLC39A6/SNAIL pathway to reduce tumor metastasis in human hepatocellular carcinoma[J]. Oncotarget, 2016, 7 (3): 2672-2683.
42
Bala S, Tilahun Y, Taha O, et al. Increased micro-RNA-155 expression in the serum and peripheral monocytes in chronic HCV infection[J]. J Transl Med, 2012 (10): 151.
43
Bala S, Csak T, Momen-Heravi F, et al. Bio-distribution and function of extracellular miRNA-155 in mice[J]. Sci Rep, 2015, 5 (5): 10721.
44
Csak T, Bala S, Lippai D, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis[J]. PLoS One, 2015, 10 (6): e0129251.
45
Sugimachi K, Matsumura T, Hirata H, et al. Iden-tification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation[J]. Br J Cancer, 2015, 112 (3): 532-538.
46
Wang H, Hou L, Li A, et al. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma[J]. Biomed Res Int, 2014 (2): 864-894.
47
Sohn W, Kim J, Kang SH, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma[J]. Exp Mol Med, 2015, 47 (9): e184.
48
Kornek M, Lynch M, Mehta SH, et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis[J]. Gastroenterology, 2012, 143 (2): 448-458.
No related articles found!
阅读次数
全文


摘要