切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2017, Vol. 10 ›› Issue (04) : 270 -273. doi: 10.3877/cma.j.issn.1674-6880.2017.04.013

所属专题: 文献

综述

脓毒症与免疫细胞凋亡相关研究进展
黄颖1, 寿松涛1, 王军1, 曹超1,()   
  1. 1. 300052 天津,天津医科大学总医院急诊医学科
  • 收稿日期:2017-04-18 出版日期:2017-08-01
  • 通信作者: 曹超
  • 基金资助:
    天津医科大学总医院青年孵育基金项目(ZYY-FY2015010); 天津市应用基础与前沿技术研究计划项目(13JCY-BJ37500); 睿E急诊医学研究专项基金项目(R2015026); 天普研究基金项目(UF201315)
  • Received:2017-04-18 Published:2017-08-01
引用本文:

黄颖, 寿松涛, 王军, 曹超. 脓毒症与免疫细胞凋亡相关研究进展[J]. 中华危重症医学杂志(电子版), 2017, 10(04): 270-273.

1
郭凤梅,邱海波. 思考与解读Sepsis新定义和诊断标准[J]. 中华内科杂志,2016,55(6):420-422.
2
Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock[J]. Crit Care Med, 2013, 41 (2): 580-637.
3
Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives[J]. Immunity, 2014, 40 (4): 463-475.
4
Fisher CJ Jr, Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein[J]. N Engl J Med, 1996, 334 (26): 1697-1702.
5
Zeni F, Freeman B, Natanson C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment[J]. Crit Care Med, 1997, 25 (7): 1095-1100.
6
Dyugovskaya L, Polyakov A. Neutrophil apoptosis and hypoxia[J]. Fiziol Zh, 2010, 56 (5): 115-124.
7
Tamayo E, Gomez E, Bustamante J, et al. Evolution of neutrophil apoptosis in septic shock survivors and nonsurvivors[J]. Crit Care, 2012, 27 (4): 415. e1-e11.
8
Milot E, Filep JG. Regulation of neutrophil survival/apoptosis by Mcl-1[J]. Scientific World J, 2011, 11 (10): 1948-1962.
9
Bermejo-Martin JF, Tamayo E, Ruiz G, et al. Circula-ting neutrophil counts and mortality in septic shock[J]. Crit Care, 2014, 18 (1): 407.
10
Bermejo-Martin JF, Andaluz-Ojeda D, Almansa R, et al. Defining immunological dysfunction in sepsis: a requisite tool for precision medicine[J]. J Infect, 2016, 72 (5): 525-536.
11
邹云,李金宝. 脓毒症中树体状细胞作用及其变化的研究进展[J]. 国际麻醉学与复苏杂志,2013,6(34):568-570.
12
Ding Y, Chung CS, Newton S, et al. Polymicrobial sepsis induces divergent effects on splenic and peritoneal dendritic cell function in mice[J]. Shock, 2004, 22 (2): 137-144.
13
Flohé SB, Agrawal H, Schmitz D, et al. Dendrictic cells during polymicmbial sepsis rapidly mature but fail to initiate a protective Th1-type immune response[J]. J Leukoc Biol, 2006, 79 (3): 473-481.
14
Hotchkiss RS, Tinsley KW, Swanson PE, et al. Deple-tion of dendritic cells, but not macrophages, in patients with sepsis[J]. J Immunol, 2002, 168 (5): 2493-2500.
15
Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy[J]. Nat Rev Immunol, 2013, 13 (12): 862-874.
16
Opal SM, Laterre PF, Francois B, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial[J]. JAMA, 2013, 309 (11): 1154-1162.
17
Adams JM, Hauser CJ, Livingston DH, et al. Early trauma polymorphonuclear neutrophil responses to chemokines are associated with development of sepsis, pneumonia, and organ failure[J]. J Trauma, 2001, 51 (3): 452-456; discussion 456-457.
18
曲冰杰,王宏伟,陆江阳. 改善树突状细胞功能干预性治疗脓毒症的研究进展[J]. 感染、炎症、修复,2009,10(4):239-242.
19
Wang HW, Yang W, Gao L, et al. Adoptive transfer of bone marrow-derived dendritic cells decreases inhibitory and regulatory T cell differentiation and improves survival in murine polymicrobial sepsis[J]. Immunol, 2015, 145 (1): 50-59.
20
Kockara A, Kayatas M. Renal cell apoptosis and new treatment options in sepsis-induced acute kidney injury[J]. Ren Fail, 2013, 35 (2): 291-294.
21
Luan YY, Dong N, Xie M, et al. The significance and regulatory mechanisms of innate immune cells in the development of sepsis[J]. Interferon Cytokine Res, 2014, 34 (1): 2-15.
22
Li Y, Zhao T, Liu B, et al. Inhibition of histone deacetylase 6 improves long-term survival in a lethal septic model[J]. J Trauma Acute Care Surg, 2015, 78 (2): 378-385.
23
Kadowaki T, Morishita A, Niki T, et al. Galectin-9 prolongs the survival of septic mice by expanding tim-3-expressing natural killer T cells and PDCA-1+ CD11c+ macrophages[J]. Crit Care, 2013, 17 (6): R284.
24
Inoue S, Suzuki-Utsunomiya K, Okada Y, et al. Reduction of immunocopetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly[J]. Crit Care Med, 2013, 41 (3): 810-819.
25
Barkhausen T, Frerker C, Pütz C, et al. Depletion of NK cells in a murine polytrauma model is associated with improved outcome and a modulation of the inflammatory response[J]. Shock, 2008, 30 (4): 401-410.
26
Chiche L, Forel JM, Thomas G, et al. The role of natural killer cells in sepsis[J]. J Biomed Biotechnol, 2011 (2011): 986491.
27
Etogo AO, Nunez J, Lin CY, et al. NK but not CD1-restricted NKT cells facilitate systemic inflammation during polymicmbial intra-abdominal sepsis[J]. J Immunol, 2008, 180 (9): 6334-6345.
28
De Pablo R, Monserrat J, Prieto A, et al. Role of circulating lymphocytes in patients with sepsis[J]. Biomed Res Int, 2014 (2014): 671087.
29
Christaki E, Anyfanti P, Opal SM. Immunomodulatory therapy for sepsis: an update[J]. Expert Rev Anti Infect Ther, 2011, 9 (11): 1013-1033.
30
Jimbo A, Fujita E, Kouroku Y, et al. ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation[J]. Exp Cell Res, 2003, 283 (2): 156-166.
31
Hotchkiss RS, Swanson PE, Knudson CM, et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis[J]. J Immunol, 1999, 162 (7): 4148-4156.
32
Schwulst SJ, Muenzer JT, Peck-Palmer OM, et al. Bim siRNA decreases lymphocyte apoptosis and improves survival in sepsis[J]. Shock, 2008, 30 (2): 127-134.
33
Ayala A, Deol ZK, Lehman DL, et al. Polymicrobial sepsis but not low-dose endotoxin infusion causes decreased splenocyte IL-2/IFN-γ release while increasing IL-4/IL-10 production[J]. J Surg Res, 1994, 56 (6): 579-585.
34
Doughty L. Adaptive immune function in critical ill-ness[J]. Curr Opin Pediatr, 2016, 28 (3): 274-280.
35
Roth G, Moser B, Krenn C, et al. Susceptibility to programmed cell death in T-lymphocytes from septic patients: a mechanism for lymphopenia and Th2 predominance[J]. Biochem Biophys Res Commun, 2003, 308 (4): 840-846.
36
Venet F, Davin F, Guignant C, et al. Early assessment of leukocyte alterations at diagnosis of septic shock[J]. Shock, 2010, 34 (4): 358-363.
37
Monserrat J, de Pablo R, Diaz-Martin D, et al. Early alterations of B cells in patients with septic shock[J]. Crit Care, 2013, 17 (3): R105.
38
Kelly-Scumpia KM, Scumpia PO, Weinstein JS, et al. B cells enhance early innate immune responses during bacterial sepsis[J]. J Exp Med, 2011, 208 (8): 1673-1682.
39
Gommerman JL, Oh DY, Zhou X, et al. A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: a potential mechanism for mast cell activation[J]. J Immunol, 2000, 165 (12): 6915-6921.
40
Schwulst SJ, Grayson MH, DiPasco PJ, et al. Ago-nistic monoclonal antibody against CD40 receptor decreases lymphocyte apoptosis and improves survival in sepsis[J]. J Immunol, 2006, 177 (1): 557-565.
No related articles found!
阅读次数
全文


摘要