切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2017, Vol. 10 ›› Issue (03) : 200 -206. doi: 10.3877/cma.j.issn.1674-6880.2017.03.013

所属专题: 文献

综述

脓毒症心功能障碍的研究进展
李玉玲1, 康健1,(), 冯卓1   
  1. 1. 116011 辽宁大连,大连医科大学附属第一医院急诊科
  • 收稿日期:2016-12-12 出版日期:2017-06-01
  • 通信作者: 康健
  • 基金资助:
    大连市青年基金项目(2016D007)
  • Received:2016-12-12 Published:2017-06-01
引用本文:

李玉玲, 康健, 冯卓. 脓毒症心功能障碍的研究进展[J]. 中华危重症医学杂志(电子版), 2017, 10(03): 200-206.

1
Jawad I, Luksic I, Rafnsson SB. Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality[J]. J Glob Health, 2012, 2 (1): 010404.
2
Zaky A, Deem S, Bendjelid K, et al. Characterization of cardiac dysfunction in sepsis: an ongoing challenge[J]. Shock, 2014, 41 (1): 12-24.
3
Kakihana Y, Ito T, Nakahara M, et al. Sepsis-induced myocardial dysfunction: pathophysiology and management[J]. J Intensive Care, 2016 (4): 22.
4
Smeding L, Plotz FB, Groeneveld AB, et al. Structural changes of the heart during severe sepsis or septic shock[J]. Shock, 2012, 37(5): 449-456.
5
Jardin F, Brun-Ney D, Auvert B, et al. Sepsis-related cardiogenic shock[J]. Crit Care Med, 1990, 18 (10): 1055-1060.
6
Jardin F, Fourme T, Page B, et al. Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock[J]. Chest, 1999, 116 (5): 1354-1359.
7
Pulido JN, Afessa B, Masaki M, et al. Clinical spect-rum, frequency, and significance of myocardial dysfunction in severe sepsis and septic shock[J]. Mayo Clin Proc, 2012, 87 (7): 620-628.
8
Abdel-Hady HE, Matter MK, El-Arman MM. El-Ar-man, myocardial dysfunction in neonatal sepsis: a tissue Doppler imaging study[J]. Pediatr Crit Care Med, 2012, 13 (3): 318-323.
9
Chang WT, Lee WH, Lee WT, et al. Left ventricular global longitudinal strain is independently associated with mortality in septic shock patients[J]. Intensive Care Med, 2015, 41 (10): 1791-1799.
10
Lanspa MJ, Gutsche AR, Wilson EL, et al. Applic-ation of a simplified definition of diastolic function in severe sepsis and septic shock[J]. Crit Care, 2016, 20 (1): 243.
11
Brown SM, Pittman JE, Hirshberg EL, et al. Diastolic dysfunction and mortality in early severe sepsis and septic shock: a prospective, observational echocardiography study[J]. Crit Ultrasound J, 2012, 4 (1): 8.
12
Rolando G, Espinoza ED, Avid E, et al. Prognostic value of ventricular diastolic dysfunction in patients with severe sepsis and septic shock[J]. Rev Bras Ter Intensiva, 2015, 27 (4): 333-339.
13
Sheyin O, Davies O, Duan W, et al. The prognostic significance of troponin elevation in patients with sepsis: a meta-analysis[J]. Heart Lung, 2015, 44 (1): 75-81.
14
Landesberg G, Jaffe AS, Gilon D, et al. Troponin el-evation in severe sepsis and septic shock: the role of left ventricular diastolic dysfunction and right ventricular dilatation[J]. Crit Care Med, 2014, 42 (4): 790-800.
15
Singh RK, Kumar S, Nadig S, et al. Right heart in septic shock: prospective observational study[J]. J Intensive Care, 2016 (4): 38.
16
Vincent JL, Bakker J, Marécaux G, et al. Administr-ation of anti-TNF antibody improves left ventricular function in septic shock patients. Results of a pilot study[J]. Chest, 1992, 101 (3): 810-815.
17
Landesberg G, Levin PD, Gilon D, et al. Myocardial dysfunction in severe sepsis and septic shock: no correlation with inflammatory cytokines in real-life clinical setting[J]. Chest, 2015, 148 (1): 93-102.
18
Xu H, Su Z, Wu J, et al. The alarmin cytokine, high mobility group box 1, is produced by viable cardiomyocytes and mediates the lipopolysaccharide-induced myocardial dysfunction via a TLR4/phosphatidylinositol 3-kinase gamma pathway[J]. J Immunol, 2010, 184 (3): 1492-1498.
19
Nakahara M, Ito T, Kawahara K, et al. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism[J]. PLoS One, 2013, 8 (9): e75961.
20
Zhang C, Mo M, Ding W, et al. High-mobility group box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca (2+) leak through TLR4-ROS signaling in cardiomyocytes[J]. J Mol Cell Cardiol, 2014 (74): 260-273.
21
Vanasco V, Saez T, Magnani ND, et al. Cardiac mito-chondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery[J]. Free Radic Biol Med, 2014 (77): 1-9.
22
An J, Du J, Wei N, et al. Differential sensitivity to LPS-induced myocardial dysfunction in the isolated brown Norway and Dahl S rat hearts: roles of mitochondrial function, NF-kappaB activation, and TNF-alpha production[J]. Shock, 2012, 37 (3): 325-332.
23
Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy[J]. Diabetologia, 2014, 57 (4): 660-671.
24
Wenz T. Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress[J]. Mitochondrion, 2013, 13 (2): 134-142.
25
Kelly DP, Scarpulla RC. Transcriptional regulatory cir-cuits controlling mitochondrial biogenesis and function[J]. Genes Dev, 2004, 18 (4): 357-368.
26
Cimolai MC, Alvarez S, Bode C, et al. Mitochondrial mechanisms in septic cardiomyopathy[J]. Int J Mol Sci, 2015, 16 (8): 17763-17778.
27
Drosatos K, Lymperopoulos A, Kennel PJ, et al. Path-ophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both?[J]. Curr Heart Fail Rep, 2015, 12 (2): 130-140.
28
Szeto HH. First-in-class cardiolipin-protective comp-ound as a therapeutic agent to restore mitochondrial bioenergetics[J]. Br J Pharmacol, 2014. 171 (8): 2029-2050.
29
Jia Z, Wang J, Shi Q, et al. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition[J]. Apoptosis, 2016, 21 (2): 174-183.
30
Preau S, Delguste F, Yu Y, et al. Endotoxemia en-gages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy[J]. Antioxid Redox Signal, 2016, 24 (10): 529-542.
31
Zhu Y, Wu H, Wu Y, et al. Beneficial effect of intermedin 1-53 in septic shock rats: contributions of Rho kinase and BKCA pathway-mediated improvement in cardiac function[J]. Shock, 2016, 46 (5): 557-565.
32
Lan F, Cacicedo JM, Ruderman N, et al. SIRT1 mo-dulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation[J]. J Biol Chem, 2008, 283 (41): 27628-27635.
33
Mo C, Wang L, Zhang J, et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice[J]. Antioxid Redox Signal, 2014, 20 (4): 574-588.
34
Planavila A, Iglesias R, Giralt M, et al. Sirt1 acts in association with PPARalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation[J]. Cardiovasc Res, 2011, 90 (2): 276-284.
35
Zhou X, Li C, Xu W, et al. Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation[J]. PLoS One, 2012, 7 (7): e40424.
36
Chen J, Lai J, Yang L, et al. Trimetazidine prevents macrophage-mediated septic myocardial dysfunction via activation of the histone deacetylase sirtuin 1[J]. Br J Pharmacol, 2016, 173 (3): 545-561.
37
Wang Z, Wu Q, Nie X, et al. Infusion of esmolol attenuates lipopolysaccharide-induced myocardial dysfunction[J]. J Surg Res, 2016, 200 (1): 283-289.
38
McCreath G, Scullion MM, Lowes DA, et al. Pharma-cological activation of endogenous protective pathways against oxidative stress under conditions of sepsis[J]. Br J Anaesth, 2016, 116 (1): 131-139.
39
Zhang Y, Xu X, Ceylan-Isik AF, et al. Ablation of Akt2 protects against lipopolysaccharide-induced cardiac dysfunction: role of Akt ubiquitination E3 ligase TRAF6[J]. J Mol Cell Cardiol, 2014 (74): 76-87.
40
Li S, Guo L, Qian P, et al. Lipopolysaccharide ind-uces autophagic cell death through the PERK-dependent branch of the unfolded protein response in human alveolar epithelial A549 cells[J]. Cell Physiol Biochem, 2015, 36 (6): 2403-2417.
41
Unuma K, Aki T, Funakoshi T, et al. Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy[J]. Autophagy, 2015, 11 (9): 1520-1536.
42
Wang H, Bei Y, Shen S, et al. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2[J]. J Mol Cell Cardiol, 2016 (94): 43-53.
No related articles found!
阅读次数
全文


摘要