切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2016, Vol. 09 ›› Issue (06) : 361 -364. doi: 10.3877/cma.j.issn.1674-6880.2016.06.001

所属专题: 文献

论著

转化生长因子β1诱导胰腺癌细胞获得肿瘤干细胞功能的研究
王晔1, 夏伟良1, 沈岩1, 郑树森1,()   
  1. 1. 310003 杭州,浙江大学医学院附属第一医院肝胆胰外科
  • 收稿日期:2016-08-17 出版日期:2016-12-01
  • 通信作者: 郑树森
  • 基金资助:
    浙江省自然科学基金项目(LY12H16011)

Inductive effect of transforming growth factor beta1 in acquiring neoplastic stem cell ability on pancreatic cancer cells

Ye Wang1, Weiliang Xia1, Yan Shen1, Shusen Zheng1,()   

  1. 1. Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  • Received:2016-08-17 Published:2016-12-01
  • Corresponding author: Shusen Zheng
  • About author:
    Corresponding author: Zheng Shusen, Email:
引用本文:

王晔, 夏伟良, 沈岩, 郑树森. 转化生长因子β1诱导胰腺癌细胞获得肿瘤干细胞功能的研究[J/OL]. 中华危重症医学杂志(电子版), 2016, 09(06): 361-364.

Ye Wang, Weiliang Xia, Yan Shen, Shusen Zheng. Inductive effect of transforming growth factor beta1 in acquiring neoplastic stem cell ability on pancreatic cancer cells[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2016, 09(06): 361-364.

目的

探讨转化生长因子β1(TGF-β1)对胰腺癌细胞系肿瘤干细胞标记物CD133表达的影响。

方法

将三种胰腺癌细胞系(AsPc-1、Panc-1和SW1990)分别分成对照组及实验组,三种细胞系中对照组予以10 μl CD133抗体及90 μl磷酸盐缓冲液(PBS)标记液,实验组予以10 μg/L TGF-β1及90 μl PBS标记液。运用流式细胞计数(FACS)评估TGF-β1对Panc-1、AsPc-1和SW1990中CD133表达的影响;同时,采用磁性活化细胞分选技术(MACS)筛选出三种细胞系CD133阴性细胞,分成Blank组、T组及T + I组,T + I组同时加入10 μg/L浓度的TGF-β1以及10 μmol /L TGF-β1抑制剂,Blank组仅添加等量的PBS溶液,T组中加入10 μg/LTGF-β1及与抑制剂等量的PBS溶液。采用FACS评估TGF-β1及其特异性抑制剂对胰腺癌CD133阴性细胞的影响。

结果

AsPc-1[(1.63 ± 0.21)% vs.(0.63 ± 0.12)%,t = 7.276,P = 0.002]、Panc-1[(3.48 ± 1.26)% vs.(0.66 ± 0.22)%,t = 4.924,P = 0.001]和SW1990[(3.83 ± 0.71)% vs.(0.90 ± 0.44)%,t = 6.102,P = 0.004]细胞系中实验组CD133阳性率显著高于对照组。同时,由MACS分选后的CD133阴性细胞中,AsPc-1[(1.70 ± 0.66)%、(0.50 ± 0.00)%、(0.64 ± 0.21)%]、Panc-1[(1.45 ± 0.53)%、(0.50 ± 0.00)%、(0.42 ± 0.17)%]和SW1990[(1.68 ± 1.26)%、(0.50 ± 0.00)%、(0.62 ± 0.11)%]中T组CD133阳性率均显著高于Blank组及T + I组(P均< 0.05)。

结论

TGF-β1可以使胰腺癌细胞获得肿瘤干细胞能力,并且该现象可以被TGF-β1抑制剂所阻断。

Objective

To investigate the effect of CD133 on pancreatic carcinoma induced by transforming growth factor beta1 (TGF-β1).

Methods

The pancreatic cancer cells were randomly divided into the control group and experimental group in AsPc-1, Panc-1 and SW1990, respectively. The control group received 10 μl CD133 antibody and 90 μl phosphate buffered saline (PBS), and the experimental group were given 10 μg/L TGF-β1 and 90 μl PBS. Fluorescence-activated cell sorting (FACS) was used to evaluate CD133 positive rate. The magnetic activated cell sorting (MACS) was used to sort CD133 negative cells, then CD133 negative cells were randomly divided into the Blank group, T group and T + I group in the AsPc-1, Panc-1 and SW1990, respectively. The T + I group were given 10 μg/L TGF-β1 and 10 μmol/L TGF-β1 inhibitors, Blank group only received the same amount of PBS, and the T group received 10 μg/L TGF-β1 and the same amount of TGF-β1 inhibitors. CD133 positive rate was evaluated by FACS again after the treatment of TGF-β1 and its inhibitor.

Results

CD133 positive rates of AsPc-1 [(1.63 ± 0.21)% vs. (0.63 ± 0.12)%, t = 7.276, P = 0.002], Panc-1 [(3.48 ± 1.26)% vs. (0.66 ± 0.22)%, t = 4.924, P = 0.001] and SW1990 [(3.83 ± 0.71)% vs. (0.90 ± 0.44)%, t = 6.102, P = 0.004] in the experimental group were much higher than those in the control group. Moreover, CD133 negative cells sorted by MACS were also changed to positive, and the CD133 positive rates of AsPc-1[(1.70 ± 0.66)%, (0.50 ± 0.00)%, (0.64 ± 0.21)%], Panc-1[(1.45 ± 0.53)%, (0.50 ± 0.00)%, (0.42 ± 0.17)%] and SW1990 [(1.68 ± 1.26)%, (0.50 ± 0.00)%, (0.62 ± 0.11)%] in the T group increased dramatically as compared with those in the Blank group and T + I group (all P< 0.05).

Conclusion

TGF-β1 can enable pancreatic cancer cells to acquire cancer stem cell's features and this phenomenon can be suppressed by the inhibitors.

表1 经TGF-β1处理后三种细胞系CD133阳性率的比较(%,±s
表2 经磁性活化细胞分选后三组细胞各系CD133阳性的比较(%,±s
1
Siegel RL,Miller KD,Jemal A. Cancer statistics, 2015 [J]. CA Cancer J Clin, 2015, 65(1): 5-29.
2
Oettle H,Post S,Neuhaus P, et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial [J]. JAMA, 2007, 297(3): 267-277.
3
Jordan CT,Guzman ML,Noble M. Cancer stem cells [J]. N Engl J Med, 2006, 355(12): 1253-1261.
4
Hermann PC,Huber SL,Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell, 2007, 1(3): 313-323.
5
Collins AT,Berry PA,Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells [J]. Cancer Res, 2005, 65(23): 10946-10951.
6
Vermeulen L,Todaro M,de Sousa Mello F, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity [J]. Proc Natl Acad Sci U S A, 2008, 105(36): 13427-13432.
7
Derynck R,Akhurst RJ,Balmain A. TGF-beta signaling in tumor suppression and cancer progression [J]. Nat Genet, 2001, 29(2): 117-129.
8
Massagué J,Blain SW,Lo RS. TGF beta signaling in growth control, cancer, and heritable disorders [J]. Cell, 2000, 103(2): 295-309.
9
Beach JR,Hussey GS,Miller TE, et al. Myosin II isoform switching mediates invasiveness after TGF-β-induced epithelial-mesenchymal transition [J]. Proc Natl Acad Sci U S A, 2011, 108(44): 17991-17996.
10
Jacobs EJ,Newton CC,Silverman DT, et al. Serum transforming growth factor-β1 and risk of pancreatic cancer in three prospective cohort studies[J]. Cancer Causes Control, 2014, 25(9): 1083-1091.
11
Javle M,Li Y,Tan D, et al. Biomarkers of TGF-β signaling pathway and prognosis of pancreatic cancer[J]. PLoS One, 2014, 9(1): e85942.
12
Halder SK,Beauchamp RD,Datta PK. A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers[J]. Neoplasia, 2005, 7(5): 509-521.
13
You H,Ding W,Rountree CB. Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta [J]. Hepatology, 2010, 51(5): 1635-1644.
14
Singh SK,Clarke ID,Terasaki M, et al. Identification of a cancer stem cell in human brain tumors [J]. Cancer Res, 2003, 63(18): 5821-5828.
15
Bhola NE,Balko JM,Dugger TC, et al. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer [J]. J Clin Invest, 2013, 123(3): 1348-1358.
16
Tirino V,Camerlingo R,Bifulco K, et al. TGF-β1 exposure induces epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, leading to an increase of migration ability in the CD133+ A549 cell fraction [J]. Cell death dis, 2013(4): e620.
17
Akhurst RJ,Derynck R. TGF-beta signaling in cancer--a double-edged sword[J]. Trends Cell Biol, 2001, 11(11): S44-S51.
[1] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[2] 马中正, 杨云川, 马翔, 周迟, 丁丁, 霍俊一, 徐楠, 崔培元, 周磊. 胰腺癌双硫死亡相关的lncRNA预后模型的构建及免疫反应研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 368-376.
[3] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[4] 朱江, 张进, 孔云飞, 李军, 宋旭. 核梭杆菌和胰腺癌的关系及临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 448-451.
[5] 史成宇, 季晓琳, 田莉莹, 张来香. 腹腔镜胰十二指肠切除术中第14c/d组淋巴结清扫在胰头癌中的临床效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 430-433.
[6] 魏孔源, 仵正, 王铮, 黎韡. 机器人胰腺中段切除后远端胰腺消化道不同重建方式初探[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 295-300.
[7] 郭诗翔, 谭明达, 王槐志. 胰头癌淋巴结清扫再思考[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 625-628.
[8] 张昊, 潘卫东. 胰腺癌新辅助化疗后可切除性评估现状及进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 629-633.
[9] 周倜, 吴嘉, 韩方, 徐林伟, 张宇华. 新辅助治疗时代胰腺癌淋巴结清扫研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 634-639.
[10] 王军华, 王锐炫. 胰腺癌新辅助化疗现状和治疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 640-643.
[11] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[12] 罗柳平, 吴萌萌, 陈欣磊, 林科灿. 胰腺全系膜切除在胰头癌根治术中的应用价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 651-656.
[13] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[14] 危用洋, 黄俊甫, 辛万鹏, 易思清, 涂书举, 方康, 李勇, 肖卫东. 三种术式治疗胰腺颈体部良性或低度恶性肿瘤的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 515-519.
[15] 杨秀君, 崔梦莹, 刘水, 盛基尧, 张丹. 基于SEER数据库胰头部胰腺神经内分泌癌患者预后列线图构建与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 520-525.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?