[1] |
Gyoneva S, Davalos D, Biswas D, et al. Systemic inflammation regulates microglial responses to tissue damage in vivo[J]. Glia, 2014, 62 (8): 1345-1360.
|
[2] |
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8 (12): 958-969.
|
[3] |
Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities[J]. Science, 2013, 339 (6116): 166-172.
|
[4] |
Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity[J]. Biochem Biophys Res Commun, 2009, 388 (4): 621-625.
|
[5] |
Pan S, Lei L, Chen S, et al. Rosiglitazone impedes Porphyromonas gingivalis-accelerated atherosclerosis by downregulating the TLR/NF-kappaB signaling pathway in atherosclerotic mice[J]. Int Immunopharmacol, 2014, 23 (2): 701-708.
|
[6] |
Chung SH, Kweon MN, Lee HK, et al. Toll-like receptor 4 initiates an innate immune response to lipopolysaccharide in human conjunctival epithelial cells[J]. Exp Eye Res, 2009, 88 (1): 49-56.
|
[7] |
Zanoni I, Ostuni R, Marek LR, et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4[J]. Cell, 2011, 147 (4): 868-880.
|
[8] |
Vandenbon A, Teraguchi S, Akira S, et al. Systems biology approaches to toll-like receptor signaling[J]. Wiley Interdiscip Rev Syst Biol Med, 2012, 4 (5): 497-507.
|
[9] |
Forbes-Hernandez TY, Gasparrini M, Afrin S, et al. The healthy effects of strawberry polyphenols: which strategy behind antioxidant capacity?[J]. Crit Rev Food Sci Nutr,2016, 56 Suppl 1: S46-S59.
|
[10] |
Khateeb J, Gantman A, Kreitenberg AJ, et al. Paraoxonase 1 (PON1) expression in hepatocytes is upregulated by pomegranate polyphenols: a role for PPAR-gamma pathway[J]. Atherosclerosis, 2010, 208 (1): 119-125.
|
[11] |
Carpenter S, O'Neill LA. Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins[J]. Biochem J, 2009, 422 (1): 1-10.
|
[12] |
Kawai T, Akira S. Toll-like receptor downstream signaling[J]. Arthritis Res Ther, 2005, 7 (1): 12-19.
|
[13] |
Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34 (5): 637-650.
|
[14] |
Antosz H, Choroszynska D. Negative regulation of Toll-like receptor signalling[J]. Postepy Hig Med Dosw (online), 2013, 67: 339-350.
|
[15] |
Nolan RP, Bree AG, Zutshi A. A mechanistic pharmacodynamic model of IRAK-4 drug inhibition in the Toll-like receptor pathway[J]. J Pharmacokinet Pharmacodyn, 2013, 40 (5): 609-622.
|
[16] |
Turan H, Bulbul BE, Yakut T, et al. Toll-like receptor 9 polymorphism in patients with erythema multiforme, Stevens Johnson syndrome and Stevens Johnson syndrome/toxic epidermal necrolysis overlap syndrome[J]. Bratisl Lek Listy, 2011, 112 (5): 260-263.
|
[17] |
Korenaga H, Nagamine R, Sakai M, et al. Expression profile of cytokine genes in Fugu monocytes stimulated with TLR agonists[J]. Int Immunopharmacol, 2013, 17 (2): 390-399.
|
[18] |
Frazier WJ, Xue J, Luce WA, et al. MAPK signaling drives inflammation in LPS-stimulated cardiomyocytes: the route of crosstalk to G-protein-coupled receptors[J]. PLoS One, 2012, 7 (11): e50071.
|
[19] |
Aksoy E, Taboubi S, Torres D, et al. The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock[J]. Nat Immunol, 2012, 13 (11): 1045-1054.
|
[20] |
Kagan JC, Su T, Horng T, et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta[J]. Nat Immunol, 2008, 9 (4): 361-368.
|
[21] |
Song Y, Liu X, Yue H, et al. Anti-inflammatory effects of benzenediamine derivate FC-98 on sepsis injury in mice via suppression of JNK, NF-kappaB and IRF3 signaling pathways[J]. Mol Immunol, 2015, 67 (2 Pt B): 183-192.
|
[22] |
Husebye H, Halaas O, Stenmark H, et al. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity[J]. EMBO J, 2006, 25 (4): 683-692.
|
[23] |
Kelley SL, Lukk T, Nair SK, et al. The crystal structure of human soluble CD14 reveals a bent solenoid with a hydrophobic amino-terminal pocket[J]. J Immunol, 2013, 190 (3): 1304-1311.
|
[24] |
Zanoni I, Ostuni R, Marek LR, et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4[J]. Cell, 2011, 147 (4): 868-880.
|
[25] |
Gioannini TL, Teghanemt A, Zhang D, et al. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations[J]. Proc Natl Acad Sci USA, 2004, 101 (12): 4186-4191.
|
[26] |
Chiang CY, Veckman V, Limmer K, et al. Phospholipase Cgamma-2 and intracellular calcium are required for lipopolysaccharide-induced Toll-like receptor 4 (TLR4) endocytosis and interferon regulatory factor 3 (IRF3) activation[J]. J Biol Chem, 2012, 287 (6): 3704-3709.
|
[27] |
Park BS, Song DH, Kim HM, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex[J]. Nature, 2009, 458 (7242): 1191-1195.
|
[28] |
Rallabhandi P, Bell J, Boukhvalova MS, et al. Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling[J]. J Immunol, 2006, 177 (1): 322-332.
|
[29] |
Park SH, Kim ND, Jung JK, et al. Myeloid differentiation 2 as a therapeutic target of inflammatory disorders[J]. Pharmacol Ther, 2012, 133 (3): 291-298.
|
[30] |
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol, 2010, 11 (5): 373-384.
|
[31] |
Jain S, Suklabaidya S, Das B, et al. TLR4 activation by lipopolysaccharide confers survival advantage to growth factor deprived prostate cancer cells[J]. Prostate, 2015, 75 (10): 1020-1033.
|
[32] |
Qanungo S, Uys JD, Manevich Y, et al. N-acetyl-L-cysteine sensitizes pancreatic cancers to gemcitabine by targeting the NFkappaB pathway[J]. Biomed Pharmacother, 2014, 68 (7): 855-864.
|
[33] |
Son PS, Park SA, Na HK, et al. Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-{kappa}B activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKK{beta} as a potential target[J]. Carcinogenesis, 2010, 31 (8): 1442-1449.
|
[34] |
Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function[J]. Nat Rev Mol Cell Biol, 2007, 8 (1): 49-62..
|
[35] |
Manna SK, Aggarwal RS, Sethi G, et al. Morin (3,5,7,2',4'-Pentahydroxyflavone) abolishes nuclear factor-kappaB activation induced by various carcinogens and inflammatory stimuli, leading to suppression of nuclear factor-kappaB-regulated gene expression and up-regulation of apoptosis[J]. Clin Cancer Res, 2007, 13 (7): 2290-2297.
|
[36] |
Suh SJ, Chung TW, Son MJ, et al. The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-kappaB regulation, in RAW264.7 cells[J]. Arch Biochem Biophys, 2006, 447 (2): 136-146.
|
[37] |
Pan MH, Lai CS, Wang YJ, et al. Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice[J]. Biochem Pharmacol, 2006, 72 (10): 1293-1303.
|
[38] |
Kim SJ, Kim MC, Lee BJ, et al. Anti-Inflammatory activity of chrysophanol through the suppression of NF-kappaB/caspase-1 activation in vitro and in vivo[J]. Molecules, 2010, 15 (9): 6436-6451.
|
[39] |
Xu CQ, Liu BJ, Wu JF, et al. Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-kappaB signaling pathway[J]. Eur J Pharmacol, 2010, 642 (1-3): 146-153.
|
[40] |
Schonthaler HB, Guinea-Viniegra J, Wagner EF. Targeting inflammation by modulating the Jun/AP-1 pathway[J]. Ann Rheum Dis, 2011, 70 Suppl 1: i109-i112.
|
[41] |
Park SH, Kang JS, Yoon YD, et al. Glabridin inhibits lipopolysaccharide-induced activation of a microglial cell line, BV-2, by blocking NF-kappaB and AP-1[J]. Phytother Res, 2010, 24 Suppl 1: S29-S34.
|
[42] |
Guinea-Viniegra J, Zenz R, Scheuch H, et al. TNFalpha shedding and epidermal inflammation are controlled by Jun proteins[J]. Genes Dev, 2009, 23 (22): 2663-2674.
|
[43] |
Camps J, Garcia-Heredia A, Rull A, et al. PPARs in regulation of paraoxonases: control of oxidative stress and inflammation pathways[J]. PPAR Res, 2012: 616371.
|
[44] |
Hu K, Yang Y, Tu Q, et al. Alpinetin inhibits LPS-induced inflammatory mediator response by activating PPAR-gamma in THP-1-derived macrophages[J]. Eur J Pharmacol, 2013, 721 (1-3): 96-102.
|
[45] |
Esposito E, Mazzon E, Paterniti I, et al. PPAR-alpha contributes to the anti-inflammatory activity of verbascoside in a model of inflammatory bowel disease in mice[J]. PPAR Res, 2010: 917312.
|
[46] |
Zhou X, Yuan L, Zhao X, et al. Genistein antagonizes inflammatory damage induced by beta-amyloid peptide in microglia through TLR4 and NF-κB[J]. Nutrition, 2014, 30 (1): 90-95.
|
[47] |
Kim J, Cha YN, Surh YJ. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders[J]. Mutat Res, 2010, 690 (1-2): 12-23.
|
[48] |
Dialynas G, Shrestha OK, Ponce JM, et al. Myopathic lamin mutations cause reductive stress and activate the nrf2/keap-1 pathway[J]. PLoS Genet, 2015, 11 (5): e1005231.
|
[49] |
Kim YC, Masutani H, Yamaguchi Y, et al. Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factors[J]. J Biol Chem, 2001, 276 (21): 18399-18406.
|
[50] |
Sakurai A, Nishimoto M, Himeno S, et al. Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2[J]. J Cell Physiol, 2005, 203 (3): 529-537.
|
[51] |
Vari R, D'Archivio M, Filesi C, et al. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages[J]. J Nutr Biochem, 2011, 22 (5): 409-417.
|
[52] |
Han JM, Jin YY, Kim HY, et al. Lavandulyl flavonoids from sophora flavescens suppress lipopoly-saccharide-induced activation of nuclear factor-kappaB and mitogen-activated protein kinases in RAW264.7 cells[J]. Biol Pharm Bull, 2010, 33 (6): 1019-1023.
|
[53] |
Jiang S, Zhu W, Li C, et al. Alpha-lipoic acid attenuates LPS-induced cardiac dysfunction through a PI3K/Akt-dependent mechanism[J]. Int Immunopharmacol, 2013, 16 (1): 100-107.
|
[54] |
He X, Wei Z, Zhou E, et al. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice[J]. Int Immunopharmacol, 2015, 28 (1): 470-476.
|
[55] |
Guo M, Cao Y, Wang T, et al. Baicalin inhibits Staphylococcus aureus-induced apoptosis by regulating TLR2 and TLR2-related apoptotic factors in the mouse mammary glands[J]. Eur J Pharmacol, 2014, 723: 481-488.
|
[56] |
Gao XJ, Guo MY, Zhang ZC, et al. Bergenin plays an anti-inflammatory role via the modulation of MAPK and NF-κB signaling pathways in a mouse model of LPS-induced mastitis[J]. Inflammation, 2015, 38 (3): 1142-1150.
|
[57] |
Li D, Fu Y, Zhang W, et al. Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice[J]. Inflamm Res, 2013, 62 (1): 9-15.
|
[58] |
Agati G, Azzarello E, Pollastri S, et al. Flavonoids as antioxidants in plants: location and functional significance[J]. Plant Sci, 2012 (196): 67-76.
|
[59] |
Varin A, Thomas C, Ishibashi M, et al. Liver X receptor activation promotes polyunsaturated fatty acid synthesis in macrophages: relevance in the context of atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2015, 35 (6): 1357-1365.
|
[60] |
Huang N, Shaik-Dasthagirisaheb YB, Lavalley MP, et al. Liver X receptors contribute to periodontal pathogen-elicited inflammation and oral bone loss[J]. Mol Oral Microbiol, 2015, 30 (6): 438-450.
|
[61] |
Abate W, Alghaithy AA, Parton J, et al. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains[J]. J Lipid Res, 2010, 51 (2): 334-344.
|
[62] |
Zhang Y, Lian F, Zhu Y, et al. Cyanidin-3-O-beta-glucoside inhibits LPS-induced expression of inflammatory mediators through decreasing IkappaBalpha phosphorylation in THP-1 cells[J]. Inflamm Res, 2010, 59 (9): 723-730.
|
[63] |
Liew FY, Xu D, Brint EK, et al. Negative regulation of toll-like receptor-mediated immune responses[J]. Nat Rev Immunol, 2005, 5 (6): 446-458.
|
[64] |
Kobayashi K, Hernandez LD, Galan JE, et al. IRAK-M is a negative regulator of Toll-like receptor signaling[J]. Cell, 2002, 110 (2): 191-202.
|
[65] |
Kinjyo I, Hanada T, Inagaki-Ohara K, et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation[J]. Immunity, 2002, 17 (5): 583-591.
|
[66] |
Wald D, Qin J, Zhao Z, et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling[J]. Nat Immunol, 2003, 4 (9): 920-927.
|
[67] |
Guven-Maiorov E, Keskin O, Gursoy A, et al. A structural view of negative regulation of the Toll-like receptor-mediated inflammatory pathway[J]. Biophys J, 2015, 109 (6): 1214-1226.
|
[68] |
Sung NY, Yang MS, Song DS, et al. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages[J]. Biochem Biophys Res Commun, 2013, 438 (1): 122-128.
|
[69] |
Xing J, Li R, Li N, et al. Anti-inflammatory effect of procyanidin B1 on LPS-treated THP1 cells via interaction with the TLR4-MD-2 heterodimer and p38 MAPK and NF-κB signaling[J]. Mol Cell Biochem, 2015, 407 (1-2): 89-95.
|