切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2016, Vol. 09 ›› Issue (04) : 234 -239. doi: 10.3877/cma.j.issn.1674-6880.2016.04.005

所属专题: 文献

论著

微小RNA-21和转化生长因子β1在急性呼吸窘迫综合征大鼠肺纤维化组织中的表达变化
陈俊伊1, 王懿春2,()   
  1. 1. 410013 湖南长沙,湖南省肿瘤医院重症医学科;421001 湖南衡阳,南华大学医学院
    2. 410013 湖南长沙,湖南省肿瘤医院重症医学科
  • 收稿日期:2016-03-11 出版日期:2016-08-01
  • 通信作者: 王懿春
  • 基金资助:
    湖南省科技厅项目(2013FJ3126); 湖南省肿瘤医院科研平台项目(PT2013-09); 湖南省肿瘤医院青年基金项目(B2012-03)

Expression of miRNA-21 and transforming growth factor beta 1 in the lung fibrosis tissue during acute respiratory distress syndrome in rats

Junyi Chen1, Yichun Wang2,()   

  1. 1. Department of Critical Care Medicine, Hunan Cancer Hospital, Changsha 410013, China; University of South China, Hengyang 421001, China
    2. Department of Critical Care Medicine, Hunan Cancer Hospital, Changsha 410013, China
  • Received:2016-03-11 Published:2016-08-01
  • Corresponding author: Yichun Wang
  • About author:
    Corresponding author: Wang Yichun, Email:
引用本文:

陈俊伊, 王懿春. 微小RNA-21和转化生长因子β1在急性呼吸窘迫综合征大鼠肺纤维化组织中的表达变化[J/OL]. 中华危重症医学杂志(电子版), 2016, 09(04): 234-239.

Junyi Chen, Yichun Wang. Expression of miRNA-21 and transforming growth factor beta 1 in the lung fibrosis tissue during acute respiratory distress syndrome in rats[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2016, 09(04): 234-239.

目的

检测微小RNA-21(miR-21)和转化生长因子β1(TGF-β1)在脓毒症诱导急性呼吸窘迫综合征(ARDS)大鼠肺纤维化组织中的表达变化。

方法

将72只大鼠分为对照组和实验组,每组36只。对照组大鼠仅开腹后关腹处理;实验组大鼠采用盲肠结扎-穿孔法建立ARDS模型。每组大鼠分别于术后12 h、1 d、2 d、3 d、4 d、5 d时间点各处死6只大鼠。取大鼠左肺组织用于苏木精-伊红(HE)染色,镜下观察肺组织结构变化,免疫组织化学法检测TGF-β1表达。取右肺组织,应用PCR法检测大鼠肺组织miR-21表达情况。

结果

各实验组大鼠术后较相应对照组出现活动明显减少,反应迟钝,呼吸急促。显微镜下,对照组大鼠肺组织未见明显炎症细胞浸润和肺实质胶原沉积。实验组大鼠肺组织可见大量炎症细胞及红细胞渗出,成纤维细胞明显增多并可见纤维组织增生。实验组大鼠肺组织miR-21表达水平术后2~5 d与同时间对照组相比均显著增高(t=7.121、5.330、6.513、19.371,P均< 0.05)。对照组各时间点阳性细胞数均为0,实验组大鼠术后1~5 d肺组织TGF-β1表达阳性率分别为22.64%、32.69%、36.20%、38.32%、45.64%。

结论

miR-21和TGF-β1在ARDS所致的肺纤维化组织中表达升高,提示miR-21和TGF-β1在ARDS大鼠的肺纤维化形成中起着重要作用。

Objective

To observe the expression of miRNA-21 (miR-21) and transforming growth factor beta 1 (TGF-β1) in the lung fibrosis tissue during acute respiratory distress syndrome (ARDS) in rats.

Methods

A total of 72 rats were randomly divided into the control group and experimental group, 36 rats in each group. Rats in the control group received laparotomy, and the cecum was just taken out and returned; rats in the experimental group were reproduced by cecal ligation and puncture method. Six rats in each group were sacrificed at 12 h, 1 d, 2 d, 3 d, 4 d, and 5 d after operation. The left lung tissue was collected and observed by a microscope. The expression of miR-21 in lung tissues were measured through fluorescence real-time quantitative PCR. The expression of TGF-β1 were examined by immunohistochemistry staining.

Results

Compared with the control group, rats in the experimental group acted out lower activities, and slow in reacting and polypnea. Under the microscope, rats in the experimental group were observed a large of infiltration on inflammatory cells and red cells, fibroblasts and hyperplasia of fibrotic tissue, but rats in the control group showed no inflammatory cell infiltration and collagen deposition in the lung. The expression of the miR-21 from 2-5 d after operation in the experimental group were higher than those in the control group at the same time point (t=7.121, 5.330, 6.513, 19.371, all P<0.05). The positive expression rate of TGF-β1 in the experimental group were 22.64%, 32.69%, 36.20%, 38.32%, and 45.64%, respectively on 1-5 d after operation, and were 0 in the control group.

Conclusions

The expression of the miR-21 and TGF-β1 were increased in the lung fibrosis tissues induced by ARDS. miR-21 and TGF-β1 play important roles in the ARDS rats with pulmonary fibrosis.

图1 各组大鼠动脉血氧分压的变化图。注:1 mmHg=0.133 kPa;与对照组比较,*P<0.05(n=36)
图2 各组大鼠肺组织染色图。注:a图为对照组肺组织;b~f图分别为1~5 d为实验组肺组织;红箭头表示大量炎症细胞及红细胞渗出;黑箭头表示成纤维细胞增多,纤维组织增生(HE染色× 100)
图3 各组大鼠肺组织中miR-21扩增值变化图。注:miR-21:微小RNA-21(micro RNA-21);与对照组比较,*P< 0.05(n=36)
图4 大鼠肺组织TGF-β1免疫组化图。注:a图为对照组肺组织;b~f图分别为1~5 d为实验组肺组织(免疫组织化学染色× 200)
[1]
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome[J]. N Engl J Med, 2013, 368 (23): 2159-2168.
[2]
何丹鸯,刘洁泉,吴春蕾,等.脓毒症并发急性呼吸窘迫综合征在急诊ICU的急救和护理[J/CD].中华危重症医学杂志:电子版,2015,8(3):203-205.
[3]
Hamacher J, Lucas R, Lijnen HR, et al. Tumor necrosis factor-alpha and angiostatin are mediators of endothelial cytotoxicity in bronchoalveolar lavages of patients with acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2002, 166 (5): 651-656.
[4]
Lee AS, Mira-Avendano I, Ryu JH, et al. The burden of idiopathic pulmonary fibrosis: an unmet public health need[J]. Respir Med, 2014, 108 (7): 955-967.
[5]
Cottin V, Crestani B, Valeyre D, et al. Diagnosis and management of idiopathic pulmonary fibrosis: French practical guidelines[J]. Eur Respir Rev, 2014, 23 (132): 193-214.
[6]
Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis[J]. Pharmacol Rev, 2015, 67 (1): 103-117.
[7]
Thickett DR, Kendall C, Spencer LG, et al. Improving care for patients with idiopathic pulmonary fibrosis (IPF) in the UK: a round table discussion[J]. Thorax, 2014, 69 (12): 1136-1140.
[8]
Fernandez IE, Eickelberg O. The impact of TGF-β on lung fibrosis: from targeting to biomarkers[J]. Proc Am Thorac Soc, 2012, 9 (3): 111-116.
[9]
Lepparanta O, Sens C, Salmenkivi K, et al. Regulation of TGF-β storage and activation in the human idiopathic pulmonary fibrosis lung [J]. Cell Tissue Res, 2012, 348 (3): 491-503.
[10]
Upton PD, Davies RJ, Tajsic T, et al. Transforming growth factor-β1 represses bone morphogenetic protein-mediated Smad signaling in pulmonary artery smooth muscle cells via Smad3[J]. Am J Respir Cell Mol Biol, 2013, 49 (6): 1135-1145.
[11]
Lee MR, Lee GH, Lee HY, et al. BAX inhibitor-1-associated V-ATPase glycosylation enhances collagen degradation in pulmonary fibrosis[J]. Cell Death Dis, 2014 (5): e1113.
[12]
Dhainaut JF, Charpentier J, Chiche JD. Transforming growth factor-beta: a mediator cell regulation in acute respiratory distress syndrome[J]. Crit Care Med, 2003, 31 (4 Suppl): S258-S264.
[13]
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis[J]. J Exp Med, 2010, 207 (8): 1589-1597.
[14]
Marquez RT, Bandyopadhyay S, Wendlandt EB, et al. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans[J]. Lab Invest, 2010, 90 (12): 1727-1736.
[15]
Davis BN, Hilyard AC, Lagna G, et al. SMAD proteins control DROSHA-mediated microRNA maturation[J]. Nature, 2008, 454 (7200): 56-61.
[16]
Rittirsch D, Huber-Lang MS, Flierl MA, et al. Immunodesign of experimental sepsis by cecal ligation and puncture[J]. Nat Protoc, 2009, 4 (1): 31-36.
[17]
Venkatesan N, Tsuchiya K, Kolb M, et al. Glycosyltransferases and glycosaminoglycans in bleomycin and transforming growth factor-β1-induced pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2014, 50 (3): 583-594.
[18]
Walraven M, Gouverneur M, Middelkoop E, et al. Altered TGF-β signaling in fetal fibroblasts: what is known about the underlying mechanisms?[J]. Wound Repair Regen, 2014, 22 (1): 3-13.
[19]
Booton R, Lindsay MA. Emerging role of microRNAs and long noncoding RNAs in respiratory disease[J]. Chest, 2014, 146 (1): 193-204.
[20]
Wang YC, Liu JS, Chen JY, et al. miR-29 mediates TGFβ1-induced extracellular matrix synthesis through activation of Wnt/β-catenin pathway in human pulmonary fibroblasts[J]. Technol Health Care, 2015, 23 (Suppl 1): S119-S125.
[21]
Pandit KV, Milosevic J. MicroRNA regulatory networks in idiopathic pulmonary fibrosis[J]. Biochem Cell Biol, 2015, 93 (2): 129-137.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[4] 魏艺, 周羽西, 杨烨, 凌秀凤, 赵纯. 微小RNA对子宫内膜容受性影响的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 266-270.
[5] 赛甫丁·艾比布拉, 买买提·依斯热依力, 李义亮, 王永康, 王志, 克力木·阿不都热依木. 不同材质补片修补对腹壁疝大鼠腹横筋膜组织转化生长因子-β1及Collagen合成代谢的作用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 161-167.
[6] 王亚岚, 倪婧, 余世庆, 陶银花, 张荣. 尼达尼布抗纤维化治疗特发性肺纤维化的耐受性和疗效预测因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 750-755.
[7] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[8] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[9] 周璇, 谢莉, 邹娟. 尼达尼布对特发性肺纤维化肺功能、肺纤维化程度及PDGF、PGE2、TGF-β1的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 368-372.
[10] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[11] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[12] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[13] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[14] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[15] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?